
C O M P U T E      |     S T O R E      |     A N A L Y Z E

Optimizing Spark with Cray
STAC December 2015

Philip Filleul – FS Global Lead

pfilleul@cray.com



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Cray: The Myth vs. Reality

Myths

• They are huge

• They are proprietary

• They are complex

• They are expensive

Vs. Reality!

• They can be – but they start less than a rack

• No: Intel, Linux, open standards, Hadoop

• Simpler and more productive than a grid

• No – cost competitive, lower TCO, higher value
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Cray in FS: A Refresher
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Workload Suitability of Spark in FS

Data parallel, Memory first, Fault tolerant, Productive

Suitable to refactor e.g. risk workloads
 Not just nightly batch but enables model interaction intraday

 Rapid prototyping

Full instrument trial/loss matrix can be Tb – easy for Spark 
to handle

Productive – easy to describe parallel computations in a 
few lines of code with Scala

Efficient – Optimized LA libraries can be accessed via JNI
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Spark Academic Benchmark on Cray

● Scientific HPC Workload * (not a STAC benchmark)
● Mass spectrometry

● Multi-rank matrix factorization

● 1Tb dataset

● Written in Scala with vectorized LA library

● Targets

(* NERSC 2015)
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Results
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Further Spark Optimizations

● Spark is not yet sophisticated in many areas e.g.
● Scratch storage does not account for a memory and storage hierarchy

● Just round robin   vs….

● Fill top tier (release when possible) then spill to next

● Aggregations send data between nodes
● Does not leverage shared storage

● Node A->Node A storage ->Node B storage ->Node B    vs…

● Node A ->shared storage->Node B

● Cray and UC Berkeley AMPlab joint work
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