
C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Spark with Cray
STAC December 2015

Philip Filleul – FS Global Lead

pfilleul@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Cray: The Myth vs. Reality

Myths

• They are huge

• They are proprietary

• They are complex

• They are expensive

Vs. Reality!

• They can be – but they start less than a rack

• No: Intel, Linux, open standards, Hadoop

• Simpler and more productive than a grid

• No – cost competitive, lower TCO, higher value

C O M P U T E | S T O R E | A N A L Y Z E

Cray in FS: A Refresher

3

Compute

CVA/XVA + Strategy Back-Testing

Aries
Interconnect

Enables single
memory space

and low
latency data

sharing

Density and
Power

Best density
and power

efficiency as
shown in
STAC A2

Intel Phi

KNC and
earliest access

to KNL

Dense GPU

8 GPU node
that does not
throttle back

and is reliable

Store

IO bound
workloads

e.g. Strategy
Back-Testing

7.5TB to
1.7TB per
sec Posix

based PFS

Appliance with
extreme

performance
and reliability

Analyze

Compliance, Surveillance,
Risk, Cyber Security, Robo

Advice

Super Scale
Spark

Low latency
fast shuffle

Super Scale
Graph

Production
scale

unpartitioned
data

C O M P U T E | S T O R E | A N A L Y Z E

Workload Suitability of Spark in FS

Data parallel, Memory first, Fault tolerant, Productive

Suitable to refactor e.g. risk workloads
 Not just nightly batch but enables model interaction intraday

 Rapid prototyping

Full instrument trial/loss matrix can be Tb – easy for Spark
to handle

Productive – easy to describe parallel computations in a
few lines of code with Scala

Efficient – Optimized LA libraries can be accessed via JNI

C O M P U T E | S T O R E | A N A L Y Z E

Spark Academic Benchmark on Cray

● Scientific HPC Workload * (not a STAC benchmark)
● Mass spectrometry

● Multi-rank matrix factorization

● 1Tb dataset

● Written in Scala with vectorized LA library

● Targets

(* NERSC 2015)

C O M P U T E | S T O R E | A N A L Y Z E

Results

C O M P U T E | S T O R E | A N A L Y Z E

Further Spark Optimizations

● Spark is not yet sophisticated in many areas e.g.
● Scratch storage does not account for a memory and storage hierarchy

● Just round robin vs….

● Fill top tier (release when possible) then spill to next

● Aggregations send data between nodes
● Does not leverage shared storage

● Node A->Node A storage ->Node B storage ->Node B vs…

● Node A ->shared storage->Node B

● Cray and UC Berkeley AMPlab joint work

Thank you!

pfilleul@cray.com

