
www.twosigma.com

Huohua 火花
Distributed Time Series Analysis
Framework For Spark

June 15, 2016

Wenbo Zhao

STAC Summit 2016

About Me

June 15, 2016

 Software Engineer @

 Focus on analytics related tools, libraries and Systems

$0.0

$500.0

$1,000.0

$1,500.0

$2,000.0

$2,500.0

1
/3

/1
9
5

0

1
/3

/1
9
5

3

1
/3

/1
9
5

6

1
/3

/1
9
5

9

1
/3

/1
9
6

2

1
/3

/1
9
6

5

1
/3

/1
9
6

8

1
/3

/1
9
7

1

1
/3

/1
9
7

4

1
/3

/1
9
7

7

1
/3

/1
9
8

0

1
/3

/1
9
8

3

1
/3

/1
9
8

6

1
/3

/1
9
8

9

1
/3

/1
9
9

2

1
/3

/1
9
9

5

1
/3

/1
9
9

8

1
/3

/2
0
0

1

1
/3

/2
0
0

4

1
/3

/2
0
0

7

1
/3

/2
0
1

0

1
/3

/2
0
1

3

1
/3

/2
0
1

6

S&P 500

We view everything as a time series

June 15, 2016

 Stock market prices

 Temperatures

 Sensor logs

 Presidential polls

 …

50°F

55°F

60°F

65°F

70°F

75°F

80°F

85°F

90°F

95°F

100°F

New York

San Francisco

What is a time series?

June 15, 2016

 A sequence of observations obtained in successive time order

 Our goal is to forecast future values given past observations

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price
?

Multivariate time series

June 15, 2016

 We can forecast better by joining multiple time series

 Temporal join is a fundamental operation for time series analysis

 Huohua enables fast distributed temporal join of large scale unaligned time series

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price

75°F

72°F
71°F

72°F

68°F
67°F

65°F

temperature

What is temporal join?

June 15, 2016

 A particular join function defined by a matching criteria over time

 Examples of criteria

 look-backward – find the most recent observation in the past

 look-forward – find the closest observation in the future

time series 1 time series 2

look-forward

time series 1 time series 2

look-backward
observation

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM

10:00 AM

12:00 AM

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM

10:00 AM

12:00 AM

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM

12:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

…

…

Hundreds of thousands of data
sources with unaligned timestamps

Thousands of market data sets

We need fast and scalable distributed temporal join

Issues with existing solutions

June 15, 2016

 A single time series may not fit into a single machine

 Forecasting may involve hundreds of time series

 Existing packages don’t support temporal join or can’t handle large time series

 MatLab, R, SAS, Pandas

 Even Spark based solutions fall short

 PairRDDFunctions, DataFrame/Dataset, spark-ts

Huohua – a new time series library for Spark

June 15, 2016

 Goal

 provide a collection of functions to manipulate and analyze time series at scale

 group, temporal join, summarize, aggregate …

 How

 build a time series aware data structure

 extending RDD to TimeSeriesRDD

 optimize using temporal locality

 reduce shuffling

 reduce memory pressure by streaming

What is a TimeSeriesRDD in Huohua?

June 15, 2016

 TimeSeriesRDD extends RDD to represent time series data

 associates a time range to each partition

 tracks partitions’ time-ranges through operations

 preserves the temporal order

TimeSeriesRDD

operations

time series

functions

TimeSeriesRDD– an RDD representing time series

June 15, 2016

time temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

RDD

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

TimeSeriesRDD– an RDD representing time series

June 15, 2016

range:
[06:00 AM, 07:00 AM)

range:
[07:00 AM, 8:00 AM)

range:
[8:00 AM, ∞)

TimeSeriesRDDtime temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

Group function

June 15, 2016

 A group function groups rows with exactly the same timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

group 3

group 4

Group function

June 15, 2016

 A group function groups rows with nearby timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

Group in Spark

June 15, 2016

 Groups rows with exactly the same timestamps

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

 Data is shuffled and materialized

Group in Spark

June 15, 2016

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Spark

June 15, 2016

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

3:00PM 3:00PM

2:00PM

4:00PM

2:00PM

4:00PM

Group in Spark

June 15, 2016

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Temporal order is not preserved

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

2:00PM 2:00PM

4:00PM 4:00PM

1:00PM 1:00PM

3:00PM 3:00PM

Group in Spark

June 15, 2016

 Back to correct temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Back to temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM

4:00PM

2:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM 4:00PM

2:00PM

Benchmark for group

June 15, 2016

 Running time of count after group

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Temporal join

June 15, 2016

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

June 15, 2016

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

June 15, 2016

 Temporal join with criteria look-back and window of length 1

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

time series time series

Temporal join

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 How do we do temporal join in TimeSeriesRDD?

TimeSeriesRDD TimeSeriesRDD

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 partition time space into disjoint intervals

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 Build dependency graph for the joined TimeSeriesRDD

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams per partition

1:00AM 1

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

4:00AM

5:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM

3:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM 3:00AM

5:00AM 5:00AM

Benchmark for temporal join

June 15, 2016

 Running time of count after temporal join

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Functions over TimeSeriesRDD

June 15, 2016

 group functions such as window, intervalization etc.

 temporal joins such as look-forward, look-backward etc.

 summarizers such as average, variance, z-score etc. over

 windows

 Intervals

 cycles

Open Source

June 15, 2016

 Not quite yet …

 https://github.com/twosigma

Future work

June 15, 2016

 Dataframe / Dataset integration

 Speed up

 Richer APIs

 Python bindings

 More summarizers

Key contributors

June 15, 2016

 Christopher Aycock

 Jonathan Coveney

 Jin Li

 David Medina

 David Palaitis

 Ris Sawyer

 Leif Walsh

 Wenbo Zhao

Thank you

June 15, 2016

 QA

