
www.twosigma.com

Huohua 火花
Distributed Time Series Analysis
Framework For Spark

June 15, 2016

Wenbo Zhao

STAC Summit 2016

About Me

June 15, 2016

 Software Engineer @

 Focus on analytics related tools, libraries and Systems

$0.0

$500.0

$1,000.0

$1,500.0

$2,000.0

$2,500.0

1
/3

/1
9
5

0

1
/3

/1
9
5

3

1
/3

/1
9
5

6

1
/3

/1
9
5

9

1
/3

/1
9
6

2

1
/3

/1
9
6

5

1
/3

/1
9
6

8

1
/3

/1
9
7

1

1
/3

/1
9
7

4

1
/3

/1
9
7

7

1
/3

/1
9
8

0

1
/3

/1
9
8

3

1
/3

/1
9
8

6

1
/3

/1
9
8

9

1
/3

/1
9
9

2

1
/3

/1
9
9

5

1
/3

/1
9
9

8

1
/3

/2
0
0

1

1
/3

/2
0
0

4

1
/3

/2
0
0

7

1
/3

/2
0
1

0

1
/3

/2
0
1

3

1
/3

/2
0
1

6

S&P 500

We view everything as a time series

June 15, 2016

 Stock market prices

 Temperatures

 Sensor logs

 Presidential polls

 …

50°F

55°F

60°F

65°F

70°F

75°F

80°F

85°F

90°F

95°F

100°F

New York

San Francisco

What is a time series?

June 15, 2016

 A sequence of observations obtained in successive time order

 Our goal is to forecast future values given past observations

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price
?

Multivariate time series

June 15, 2016

 We can forecast better by joining multiple time series

 Temporal join is a fundamental operation for time series analysis

 Huohua enables fast distributed temporal join of large scale unaligned time series

$8.90
$8.95

$8.90

$9.06
$9.10

8:00 11:00 14:00 17:00 20:00

corn price

75°F

72°F
71°F

72°F

68°F
67°F

65°F

temperature

What is temporal join?

June 15, 2016

 A particular join function defined by a matching criteria over time

 Examples of criteria

 look-backward – find the most recent observation in the past

 look-forward – find the closest observation in the future

time series 1 time series 2

look-forward

time series 1 time series 2

look-backward
observation

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM

10:00 AM

12:00 AM

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM

10:00 AM

12:00 AM

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM

12:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time corn price

08:00 AM

11:00 AM

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

Temporal join with look-backward criteria

June 15, 2016

time weather

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

time corn price

08:00 AM

11:00 AM

time weather corn price

08:00 AM 60 °F

10:00 AM 70 °F

12:00 AM 80 °F

…

…

Hundreds of thousands of data
sources with unaligned timestamps

Thousands of market data sets

We need fast and scalable distributed temporal join

Issues with existing solutions

June 15, 2016

 A single time series may not fit into a single machine

 Forecasting may involve hundreds of time series

 Existing packages don’t support temporal join or can’t handle large time series

 MatLab, R, SAS, Pandas

 Even Spark based solutions fall short

 PairRDDFunctions, DataFrame/Dataset, spark-ts

Huohua – a new time series library for Spark

June 15, 2016

 Goal

 provide a collection of functions to manipulate and analyze time series at scale

 group, temporal join, summarize, aggregate …

 How

 build a time series aware data structure

 extending RDD to TimeSeriesRDD

 optimize using temporal locality

 reduce shuffling

 reduce memory pressure by streaming

What is a TimeSeriesRDD in Huohua?

June 15, 2016

 TimeSeriesRDD extends RDD to represent time series data

 associates a time range to each partition

 tracks partitions’ time-ranges through operations

 preserves the temporal order

TimeSeriesRDD

operations

time series

functions

TimeSeriesRDD– an RDD representing time series

June 15, 2016

time temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

RDD

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

TimeSeriesRDD– an RDD representing time series

June 15, 2016

range:
[06:00 AM, 07:00 AM)

range:
[07:00 AM, 8:00 AM)

range:
[8:00 AM, ∞)

TimeSeriesRDDtime temperature

6:00 AM 60°F

6:01 AM 61°F

… …

7:00 AM 70°F

7:01 AM 71°F

… …

8:00 AM 80°F

8:01 AM 81°F

… …

(6:00 AM, 60°F)
(6:01 AM, 61°F)

…

(7:00 AM, 70°F)
(7:01 AM, 71°F)

…

(8:00 AM, 80°F)
(8:01 AM, 81°F)

…

Group function

June 15, 2016

 A group function groups rows with exactly the same timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

group 3

group 4

Group function

June 15, 2016

 A group function groups rows with nearby timestamps

time city temperature

1:00 PM New York 70°F

1:00 PM San Francisco 60°F

2:00 PM New York 71°F

2:00 PM San Francisco 61°F

3:00 PM New York 72°F

3:00 PM San Francisco 62°F

4:00 PM New York 73°F

4:00 PM San Francisco 63°F

group 1

group 2

Group in Spark

June 15, 2016

 Groups rows with exactly the same timestamps

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

 Data is shuffled and materialized

Group in Spark

June 15, 2016

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Spark

June 15, 2016

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

3:00PM 3:00PM

2:00PM

4:00PM

2:00PM

4:00PM

Group in Spark

June 15, 2016

 Data is shuffled and materialized

RDD

groupBy

RDD

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Temporal order is not preserved

RDD

groupBy

RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Another sort is required

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

2:00PM 2:00PM

4:00PM 4:00PM

1:00PM 1:00PM

3:00PM 3:00PM

Group in Spark

June 15, 2016

 Back to correct temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Spark

June 15, 2016

 Back to temporal order

RDD

groupBy sortBy

RDD RDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

1:00PM 1:00PM

2:00PM 2:00PM

3:00PM 3:00PM

4:00PM 4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

2:00PM

1:00PM

3:00PM

3:00PM

4:00PM

4:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM

4:00PM

2:00PM

Group in Huohua

June 15, 2016

 Data is grouped locally as streams

TimeSeriesRDD

1:00PM

2:00PM

1:00PM

3:00PM 3:00PM

4:00PM 4:00PM

2:00PM

Benchmark for group

June 15, 2016

 Running time of count after group

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Temporal join

June 15, 2016

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

June 15, 2016

 A temporal join function is defined by a matching criteria over time

 A typical matching criteria has two parameters

 direction – whether it should look-backward or look-forward

 window - how much it should look-backward or look-forward

look-backward temporal join

window

Temporal join

June 15, 2016

 Temporal join with criteria look-back and window of length 1

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

time series time series

Temporal join

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 How do we do temporal join in TimeSeriesRDD?

TimeSeriesRDD TimeSeriesRDD

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 partition time space into disjoint intervals

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window of length 1

 Build dependency graph for the joined TimeSeriesRDD

TimeSeriesRDD TimeSeriesRDDjoined

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams per partition

1:00AM 1

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

4:00AM

5:00AM

3:00AM

5:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM 1:00AM1:00AM

2:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM

3:00AM

Temporal join in Huohua

June 15, 2016

 Temporal join with criteria look-back and window 1

 Join data as streams

2:00AM

1:00AM

4:00AM

5:00AM

1:00AM

3:00AM

5:00AM

TimeSeriesRDD TimeSeriesRDDjoined

1:00AM

1:00AM

1:00AM

2:00AM

4:00AM 3:00AM

5:00AM 5:00AM

Benchmark for temporal join

June 15, 2016

 Running time of count after temporal join

 16 executors (10G memory and 4 cores per executor)

 data is read from HDFS

0s

20s

40s

60s

80s

100s

20M 40M 60M 80M 100M

RDD DataFrame TimeseriesRDD

Functions over TimeSeriesRDD

June 15, 2016

 group functions such as window, intervalization etc.

 temporal joins such as look-forward, look-backward etc.

 summarizers such as average, variance, z-score etc. over

 windows

 Intervals

 cycles

Open Source

June 15, 2016

 Not quite yet …

 https://github.com/twosigma

Future work

June 15, 2016

 Dataframe / Dataset integration

 Speed up

 Richer APIs

 Python bindings

 More summarizers

Key contributors

June 15, 2016

 Christopher Aycock

 Jonathan Coveney

 Jin Li

 David Medina

 David Palaitis

 Ris Sawyer

 Leif Walsh

 Wenbo Zhao

Thank you

June 15, 2016

 QA

