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About Me

+ Software Engineer @ €» TWO SIGMA

+ Focus on analytics related tools, libraries and Systems
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We view everything as a time series
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What is a time series?

+ A sequence of observations obtained in successive time order

+ Our goal is to forecast future values given past observations
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Multivariate time series

+ We can forecast better by joining multiple time series
+ Temporal join is a fundamental operation for time series analysis

+ Huohua enables fast distributed temporal join of large scale unaligned time series
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What is temporal join?

« A particular join function defined by a matching criteria over time

+ Examples of criteria
+ look-backward - find the most recent observation in the past

+ look-forward - find the closest observation in the future

time series 1 time series 2 time series 1 time series 2
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Temporal join with look-backward criteria
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Temporal join with look-backward criteria
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Temporal join with look-backward criteria
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Temporal join with look-backward criteria
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Temporal Jom W|th Iook backward criteria

Hundreds of thousands of data

III sources with unaligned timestamps
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We need fast and scalable distributed temporal join
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Issues with existing solution

+ A single time series may not fit into a single machine

+ Forecasting may involve hundreds of time series

+ Existing packages don’t support temporal join or can’t handle large time series
+ MatlLab, R, SAS, Pandas

+ Even Spark based solutions fall short

+ PairRDDFunctions, DataFrame/Dataset, spark-ts
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Huohua - a new time series library for Spark

+ Goal

provide a collection of functions to manipulate and analyze time series at scale

group, temporal join, summarize, aggregate ...
+ How

build a time series aware data structure

extending RDD to TimeSeriesRDD

optimize using temporal locality
reduce shuffling

reduce memory pressure by streaming
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What is a TimeSeriesRDD in Huohua?

+ TimeSeriesRDD extends RDD to represent time series data
associates a time range to each partition
tracks partitions’ time-ranges through operations

preserves the temporal order

functions operations

time series TimeSeriesRDD
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TimeSeriesRDD- an RDD representing time series
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TimeSeriesRDD- an RDD representing time series
| | | | | | | | | | | | | | | I | | O
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Group function

+ A group function groups rows with exactly the same timestamps

1:00 PM New York 70°F
1:00 PM San Francisco 60°F

= group 1

| 200PM  SwRmnco  eF

3:00 PM New York 72°F
3:00 PM San Francisco 62°F

= group 3
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Group function

+ A group function groups rows with nearby timestamps

1:00 PM New York 70°F
1:00 PM San Francisco 60°F

= group 1

3:00 PM New York 72°F

J1

3:00 PM San Francisco 62°F

C400PM Newvk  7EF
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Group in Spark

+ Groups rows with exactly the same timestamps
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Group in Spark

+ Data is shuffled and materialized

~——————
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Group in Spark

+ Data is shuffled and materialized
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Group in Spark

+ Data is shuffled and materialized
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Group in Spark

+ Temporal order is not preserved
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Group in Spark
+ Another sort is required
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Group in Spark
+ Another sort is required

RDD

RDD
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Group in Spark

+ Back to correct temporal order
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Group in Spark
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Group in Huohua

| | | | | | | | | | | | | | | | | |
+ Data is grouped locally as streams

TimeSeriesRDD
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Group in Huohua

+ Data is grouped locally as streams

TimeSeriesRDD
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Group in Huohua

| | | | | | | | | | | | | | | | | |
+ Data is grouped locally as streams

TimeSeriesRDD
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Group in Huohua

+ Data is grouped locally as streams

TimeSeriesRDD
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Benchmark for group

|| | | | | | | | | | | | | | | | | |
+ Running time of count after group

+ 16 executors (10G memory and 4 cores per executor)

+ datais read from HDFS
100s

80s

60s

40s

20s

Os
20M 40M 60M 80M 100M

O RDD mDataFrame [OTimeseriesRDD
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Temporal join

+ A temporal join function is defined by a matching criteria over time
+ A typical matching criteria has two parameters
direction - whether it should look-backward or look-forward

window - how much it should look-backward or look-forward

window

look-backward temporal join
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Temporal join

+ A temporal join function is defined by a matching criteria over time
+ A typical matching criteria has two parameters
direction - whether it should look-backward or look-forward

window - how much it should look-backward or look-forward

window

look-backward temporal join
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Temporal join

+ Temporal join with criteria look-back and window of length 1

time series time series
1:00AM 2 1:00AM
2:00AM
© 3:00AM
4:00AM
5 : 00AM ' 5:00AM
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Temporal join

+ Temporal join with criteria look-back and window of length 1

+ How do we do temporal join in TimeSeriesRDD?

TimeSeriesRDD TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window of length 1

+ partition time space into disjoint intervals

TimeSeriesRDD joined TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window of length 1

+ Build dependency graph for the joined TimeSeriesRDD

TimeSeriesRDD joined TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window 1

Join data as streams per partition

TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window 1

Join data as streams

TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window 1

Join data as streams

TimeSeriesRDD
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Temporal join in Huohua

+ Temporal join with criteria look-back and window 1

Join data as streams

TimeSeriesRDD joined TimeSeriesRDD
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Benchmark for temporal join

+ Running time of count after temporal join
+ 16 executors (10G memory and 4 cores per executor)

+ data is read from HDFS
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Functions over TimeSeriesRDD

+ group functions such as window, intervalization etc.
+ temporal joins such as look-forward, look-backward etc.
+ summarizers such as average, variance, z-score etc. over
+ windows
+ Intervals

+ cycles
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Open Source

+ Not quite yet ...
+ https://github.com/twosigma
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Future work

+ Dataframe / Dataset integration
+ Speed up
+ Richer APlIs

+ Python bindings

+ More summarizers
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