

Adventures on AWS with High-Performance Workloads

Peter Lankford Founder and Director, STAC

peter.lankford@STACresearch.com

Why research public cloud?

- Some of you are using it today
- Some of you are evaluating it
- Most of you find the comparisons useful
 - Comparisons within a cloud service (e.g., price-performance impact of a new processor)
 - Comparisons to your internal price-performance

Why research AWS?

- Market share leader
- Many configurations to choose from and compare
 - CPU and GPU
 - Different processor types, speeds
 - Different memory configurations
 - Etc.
- This means:
 - Could be daunting for a user to figure out instance with best price-performance
 - Can make many useful comparisons even for deployed systems

Instance Typ	pes Ma	ñrix -					
Instance Type	VCPU	Memory (Catt)	Storage (GB)	Networking Performance	Physical Processor	Clock Speed (GHz)	in AV
12 micro	1	1	EBS Only	Low to Moderate	Intel Xecm family	2.5	Y
12 arnall	1	2	EBS Only	Low to Moderate	Intel Xecm family	2.5	Y
12.medium	2	4	EBS Only	Low to Moderate	Intel Xecm family	2.5	Y
nd.medium	1	a.75	1 x 4 550	Moderate	Infel Xeon ES-2670 v2*	2.5	'n
mällange	2	7.5	1 x 32 880	Moderate	Intel Xeon ES-2670 v2*	2.5	Y
nd.xlarge	4	15	2 x 40 SSD	High	Infel Xeon ES-2870 v2*	2.5	Y
nd.2xkege	8	30	2 x 80 SSD	High	Infel Xeon ES-2670 v2*	2.5	'n
o4.targe	2	3.75	EBS Only	Moderate	Intel Xecm ES-2688 V3	2.9	Y
o4.starge	4	7.5	EBS Only	High	Infel Xeon E5-2688 V3	2.9	Y
o4.2xlarge	8	15	EBS Only	High	Infel Xeon E5-2686 V3	2.9	'n
o4.4starge	18	30	EBS Only	High	Intel Xeon ES-2688 V3	2.9	Y
o4.8xtarge	38	60	EBS Only	10 Gigabit	Infel Xeon E5-2688 V3	2.9	Y
c3.large	2	3.75	2 x 18 SSD	Moderate	Intel Xeon E5-2680 V2	2.8	'n
c3.starge	4	75	2 x 40 880	Moderate	Infel Xecn ES-2680 V2	2.8	Y
c3.2xlarge	8	15	2 x 80 850	High	Infel Xecn E5-2680 V2	2.8	Y
c3.4starge	16	30	2 x 160 SSD	High	Infel Xeon E5-2680 V2	2.8	'n
c3.5thrps	32	60	2 x 320 SSD	10 Cigabit	Intel Xeon E5-2680 V2	2.8	Y
g2.2xlarge	8	15	SSD	High	E5-2670	2.8	Y
g2.8xlarge	32	60	2 x 120 880	10 Gigsbill	Intel Xecn E5-2670	2.8	Y
r3.targe	2	15.25	1 x 32 880	Moderate	Infel Xeon ES-2670 V2	2.5	Y
rilotarge	4	30.5	1 x 80 SSD	Moderate	Infel Xeon E5-2670 V2	2.5	w
r3.2xlarge	8	61	1 x 160 SSD	High	Infel Xeon ES-2670 v2	2.5	'n
r3.4xhrge	18	122	1 x 390 880	High	Infel Xeon ES-2670 V2	2.5	Y
r3.8xlarge	32	244	2 x 320 SSD	10 Gigabit	E5-2670 V2	2.5	W
iZ.starge	4	30.5	1 x 800 SSD	Moderate	nfel Xeon E5-2670 V2	2.5	Y
2.2xlarge	8	61	2 x 800 SSD	High	infel Xech ES-2870 V2	2.5	Y
12.4xharga	18	122	4 x 800 SSD	High	E5-2670 v2	2.5	Y
17.8xkerge	32	244	8 x 800 SSD	10 Gigibit	ES-2670 V2	2.5	'n
d2.starge	4	30.5	3 x 2000	Moderate	E5-2878 V3	2.4	Y
d2.2xlarge		61	6 x 2000	High	E5-2676 V3	2.4	'n
d2.4xlarge	18	122	12 x 2000	High	E5-2676 V3	2.4	Y
rt2 Relavia	38	244	24 x	10 Carabil	F5.2878	9.4	v

What have we been doing?

- Use AWS as a customer
- Paid for an AWS Business Support plan
- Document our experiences for the benefit of STAC subscribers
- Test a bunch of instance types

What instance types did we choose for STAC-A2?

- What AWS calls "compute-optimized" and "memory-optimized" types
- Sadly, GPU instance types were not compatible with the STAC-A2 Pack for CUDA 5.5 or STAC-A2 Pack for CUDA 6.5
 - Future?
- Used latest STAC-A2 Pack for Intel Composer XE
- OS: chose RHEL 6.5 because it's common
- Virtualization: chose HVM rather than PV
- Chose (mostly) Dedicated instance types because Multi-tenant introduces another variable
 - Did do a couple multi-tenant tests. But testing the impact of multi-tenancy is tricky.
- Chose On-Demand instance types because use case was cloud bursting

The list:

- c3.4xlarge, dedicated, on-demand, RHEL 6.5
- c3.4xlarge, multi-tenant, on-demand, RHEL 6.5
- c3.8xlarge, dedicated, on-demand, RHEL 6.5
- c3.8xlarge, dedicated, on-demand, RHEL 6.6 kernel*
- c4.4xlarge, dedicated, on-demand, RHEL 6.5*
- c4.8xlarge, dedicated, on-demand, RHEL 6.6 kernel*
- c4.8xlarge, multi-tenant, on-demand, RHEL 6.6 kernel*
- r3.2xlarge, dedicated, on-demand, RHEL 6.5
- r3.4xlarge, dedicated, on-demand, RHEL 6.5
- r3.8xlarge, dedicated, on-demand, RHEL 6.5

* See the caveats in the Tech Note. There were configuration conflicts related to Xen/RHEL that limited what could be done with some instance types. RH created bug reports, and AWS corrected their instance type descriptions in response to our findings.

Methodology

- Tests were standard STAC-A2
 - Including new 10-100k-1260 benchmark
- Price-performance extrapolated from WARM times to infer the cost to run:
 - 1 million jobs of the baseline workload (GREEKS) in one hour
 - 1 million jobs of the large workload (GREEKS.100-100k-1260) in one hour
- A customer can plug in its internal costs to compare

Selected results – baseline price performance

Selected results – absolute performance vs standalone

What instance types did we choose for STAC-M3?

- What AWS calls "storage-optimized" types
 - "very fast SSD-backed instance storage optimized for very high random I/O performance, and provide high IOPS at a low cost."
- What AWS calls "dense storage" types
 - "lowest price per disk throughput performance on Amazon EC2"
- Only had scope to test two instance types so far
- There are many other configuration possibilities
 - Elastic Block Storage (EBS) General Purpose SSD
 - EBS Provisioned IOPS SSD
 - EBS Magnetic Volumes
 - Simple Storage Service (S3)
 - Combinations of these with various EC2 instance types
- Used latest STAC-M3 Pack for kdb+ 3.2
 - Based on interest expressed by customers
- Chose RHEL 6.5, Dedicated, On-Demand for same reasons as in STAC-A2 research

Copyright © 2015 Securities Technology Analysis Center LLC

The two:

- d2.8xlarge, dedicated, on-demand, RHEL 6.5
- i2.8xlarge, dedicated, on-demand, RHEL 6.5
- * See configuration notes in the Tech Note.

Methodology

- Tests were standard STAC-M3 Antuco
 - Based on results, held off Kanaga until more feedback
- Price-performance methodology not settled
 - Two cases: batch & interactive
 - Proposal for batch: extrapolate to resources required to complete a large number of batch jobs
 - Proposal for interactive: extrapolate to resources required to maintain a responsetime SLA for a large volume of queries
- Goal: Let a customer plug in its internal costs to compare
- Still working this up. Here's a sneak peek.

Selected results – absolute performance of i2 vs d2

• i2.8xlarge vs d2.8xlarge

Absolute performance vs standalone systems

• i2.8xlarge vs Scalable Informatics 2-socket Ivy Bridge server with Optimus SSD

* 10T.MKTSNAP omitted because Kx radically improved performance of that benchmark after the Scalable tests.

Selected results: batch-based price performance

Copyright © 2015 Securities Technology Analysis Center LLC

Next steps (need your help prioritizing)

- Other instance types
 - Under STAC-A2
 - Under STAC-M3
- Other clouds
 - IBM Softlayer, Microsoft Azure, Google Cloud
 - Specialty high-performance providers
- Other workloads?
 - STAC-A3 (backtesting)
 - STAC-M2 (messaging)
 - Other streaming benchmarks
- Getting cloud providers involved

Question

- Do we create a cloud interest group?
- Or is cloud simply one of the things to study within each workload domain?

