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Overview

• Background on engineering automated trading 

decisions

• Early machine learning research and what’s 

changed since then

• Overview of deep learning

• Training and backtesting on advanced 

computer architectures
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Markets

• Futures market
– CME 50 liquid futures 

– Other exchanges

• Equity markets

• FX markets
– 10 major currency pairs

– 30 alternative currency pairs

• Options markets



Strategy Universe
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Strategy Engineering

How can we engineer a strategy producing 

buy / sell decisions ?
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Classifiers

Strategy configuration c

Features Classifier

Trading decision  s(c)

E.g.
-Historic price 
returns at 
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-Moving 
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What’s changed since the 90’s?
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Computer architecture 
transformation in 
half a century

RAND computing facilities in the 1950s-60s



Variety of Parallel 
Architectures
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Big Data <-> Big Compute

Big Data Big Compute

BDeep Neural Networks



Feature Engineering

Labels from positive, 
neutral or 
negative market returns

Normalized

features

LabelRaw features

Labeled 

feature set

-Lagged price differences 
from 1 to 100
-moving price averages with 
window size from 5 to 100
-pair-wise correlation of 
returns

5 minute mid-prices for 45 
CME listed commodity and 
FX futures over the last 15 
years

Final feature set 
consists of 9895 
features and
50,000 consecutive 
observations

Engineered

features



Deep Learning Algorithm



Walk forward optimization



DNN Performance

Comparison of the classification accuracy of a classical ANN 
(with one hidden layer) and a DNN with four hidden layers. 
The in-sample and out-of-sample error rates are also 
compared to check for over-fitting. 



DNN Performance



Implementation

In designing an algorithm for parallel efficiency on a 
shared memory architecture, three design goals have 
been implemented: 

1. The algorithm has to be designed with good data 
locality properties. 

2. The dimension of the matrix or for loop being 
parallelized is at least equal to the number of 
threads. 

3. BLAS routines from the MKL should be used in 
preference to openmp parallel for loop 
primitives. 



Implementation



Performance on the Intel Xeon Phi

0 10 20 30 40 50 60

0
10

20
30

40

Number of cores

S
pe

ed
up

240

1000

5000

10000

Speedup of the 
batched back-
propagation 
algorithm on the 
Intel Xeon Phi as the 
number of cores is 
increased. 



Performance on the Intel Xeon Phi



Speedup of the batched 
back-propagation 
algorithm on the Intel 
Xeon Phi relative to the 
baseline for various batch 
sizes. 

Performance on the Intel Xeon Phi



Performance on the Intel Xeon Phi

The GFLOPS of the weight matrix 
update (using dgemm) for each layer. 

Variation of the GFLOPS of the first 
layer weight matrix update with the 
batch size. 



Summary

• DNNs exhibit less overfitting than ANNs.

• Previous studies have applied ANNs to single 

instruments.  We combine multiple instruments 

across multiple markets and engineer features 

based on lagging/moving averages and 

correlations of prices and returns respectively.

• The training of DNNs requires many parameters 

and is very computationally intensive –we solved 

this problem by using the Intel Xeon Phi. 


