

Deep Neural Networks for Market Prediction on the Xeon Phi^{*}

Matthew Dixon¹, Diego Klabjan² and Jin Hoon Bang³

* The support of Intel Corporation is gratefully acknowledged

1 Department of Finance, Stuart School of Business, Illinois Institute of Technology

2 Department of Industrial Engineering and Management Sciences, Northwestern University

3 Department of Computer Science, Northwestern University

- ILLINOIS INSTITUTE OF TECHNOLOGY
- Background on engineering automated trading decisions
- Early machine learning research and what's changed since then
- Overview of deep learning
- Training and backtesting on advanced computer architectures

Example

ILLINOIS INSTITUTE OF TECHNOLOGY

- Futures market
 - CME 50 liquid futures
 - Other exchanges
- Equity markets
- FX markets
 - 10 major currency pairs
 - 30 alternative currency pairs
- Options markets

Strategy Universe

ILLINOIS INSTITUTE OF TECHNOLOGY

How can we engineer a strategy producing buy / sell decisions ?

Finance Research Literature IIT Stuart School of Business

- J. Chen, J. F. Diaz, and Y. F. Huang. High technology ETF forecasting: Application of Grey Relational Analysis and Artificial Neural Networks. Frontiers in Finance and Economics, 10(2):129–155, 2013.
- S. Niaki and S. Hoseinzade. Forecasting S&P 500 index using artificial neural networks and design of experiments. Journal of Industrial Engineering International, 9(1):1, 2013.
- M. T. Leung, H. Daouk, and A.-S. Chen. Forecasting stock indices: a comparison of classification and level estimation models. International Journal of Forecasting, 16(2):173–190, 2000.
- A. N. Refenes, A. Zapranis, and G. Francis. Stock performance modeling using neural networks: A comparative study with regression models. Neural Networks, 7(2):375 – 388, 1994.
- R. R. Trippi and D. DeSieno. Trading equity index futures with a neural network. The Journal of Portfolio Management, 19(1):27–33, 1992.

- Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
- R. Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1996.

Classifiers Illinois Institute of Technology

Strategy configuration c

What's changed since the 90's? IIT Stuart School of Business

ILLINOIS INSTITUTE OF TECHNOLOGY

Figure 1.1: Scaling of the processor clock speeds.

Computer architecture transformation in half a century

ILLINOIS INSTITUTE OF TECHNOLOGY

Xeon® Phi™ Coprocessor

RAND computing facilities in the 1950s-60s

Variety of Parallel Architectures

Compute Cluster Block Diagram

Big Data <-> Big Compute IIT Stuart School of Business

Feature Engineering

ILLINOIS INSTITUTE OF TECHNOLOGY

Raw features

5 minute mid-prices for 45 CME listed commodity and FX futures over the last 15 years

-Lagged price differences
from 1 to 100
-moving price averages with
window size from 5 to 100
-pair-wise correlation of
returns

Labels from positive, neutral or negative market returns

Deep Learning Algorithm IIT Stuart School of Business

Algorithm 2 Deep Learning Methodology				
1: f	for $\gamma := 0.1, 0.2, \ldots, 1$ do			
2:	<initialize all="" weights=""></initialize>			
3:	$w_{i,j}^{(l)} \leftarrow r, \ r \in \mathcal{N}(\mu,\sigma), \ \forall i,j,l$			
4:	<iterate epochs="" over=""></iterate>			
5:	for $e = 1, \dots, N_e$ do			
6:	Generate D_e			
7:	<iterate mini-batches="" over=""></iterate>			
8:	for $m = 1, \ldots, M$ do			
9:	Generate \mathcal{D}_m			
10:	<feed-forward construction="" network=""></feed-forward>			
11:	for $l = 2, \ldots, L$ do			
12:	Compute all $x_i^{(l)}$			
13:	end for			
14:	for $l = L, \dots, 2$ do			
15:	<backpropagation></backpropagation>			
16:	Compute all $\delta_j^{(l)} := \nabla_{s_j^{(l)}} E$			
17:	<update the="" weights=""></update>			
18:	$\mathbf{w}^{(l)} \leftarrow \mathbf{w}^{(l)} - \gamma X^{(l-1)} \left(\delta^{(l)} \right)^T$			
19:	end for			
20:	end for			
21:	end for			
22:	If crossentropy(e) \leq crossentropy(e-1) then $\gamma \leftarrow \gamma/2$			
23: end for				
24: Return final weights $w_{i,j}^{(l)}$				

Walk forward optimization IIT Stuart School of Business

DNN Performance

ILLINOIS INSTITUTE OF TECHNOLOGY

method	in sample	out-of-sample	change (%)
ANN	0.75	0.66	-12.0
DNN	0.78	0.73	-6.4

Comparison of the classification accuracy of a classical ANN (with one hidden layer) and a DNN with four hidden layers. The in-sample and out-of-sample error rates are also compared to check for over-fitting.

DNN Performance

In designing an algorithm for parallel efficiency on a shared memory architecture, three design goals have been implemented:

- 1. The algorithm has to be designed with good data locality properties.
- 2. The dimension of the matrix or for loop being parallelized is at least equal to the number of threads.
- 3. BLAS routines from the MKL should be used in preference to openmp parallel for loop primitives.

Implementation

	CPU System	Co-processor System	
Processor	Xeon E5-2690 v2	Xeon Xeon Phi 7120	
	- 16 cores	- 61 cores	
	- 20 threads (HT on)	- 244 threads (HT on)	
	- 2.30GHz	- 1.24GHz	
ECC	on	on	
RAM	128GB	16GB	
OS	GNU 2.6.32	GNU 2.6.38	
XE Composer	2015		
Compiler	ICC	15.0.2	
Flags	-O3	-O3 -mmic	

IIT Stuart School Performance on the Intel Xeon Phi of Business

ILLINOIS INSTITUTE OF TECHNOLOGY

Speedup of the batched backpropagation algorithm on the Intel Xeon Phi as the number of cores is increased.

b	platform	ffwd	delta	weights	total
	baseline	2.03	2.22	1.34	5.59
1000	Xeon Phi	0.295	0.105	0.0915	0.491
	speedup	6.88 x	21.1 x	14.6x	11.4x
	baseline	8.45	21.0	6.71	36.1
5000	Xeon Phi	0.626	0.383	0.412	1.42
	speedup	13.9 x	54.8 x	16.3x	25.4x
	baseline	17.9	42.2	13.9	74.0
10000	Xeon Phi	1.15	0.704	0.846	2.70
	speedup	15.6 x	59.9 x	16.4x	27.4x

Performance on the Intel Xeon Phi of Business

ILLINOIS INSTITUTE OF TECHNOLOGY

Speedup of the batched back-propagation algorithm on the Intel Xeon Phi relative to the baseline for various batch sizes.

IIT Stuart School Performance on the Intel Xeon Phi of Business

ILLINOIS INSTITUTE OF TECHNOLOGY

update (using dgemm) for each layer.

layer weight matrix update with the batch size.

- DNNs exhibit less overfitting than ANNs.
- Previous studies have applied ANNs to single instruments. We combine multiple instruments across multiple markets and engineer features based on lagging/moving averages and correlations of prices and returns respectively.
- The training of DNNs requires many parameters and is very computationally intensive —we solved this problem by using the Intel Xeon Phi.