“A sharper Arrow”
Accelerating Columnar

Analytics with Apache Arrow
2020-10-21 Global STAC

Wes McKinney @wesmckinn

»

APACHE

ARROW




Me

* Director of Ursa Labs, open source dev
group working on Apache Arrow

* Created Python pandas project

* PMC Apache {Arrow, Parquet},
ASF Member

* Wrote Python for Data Analysis

* Formerly: Two Sigma, Cloudera, DataPad,
AQR




Many columnar
data tools have
significant
iInefficiencies

High % of compute spent on
serialization (converting
between data formats)
Inefficient in-memory
computing that fails to fully
utilize modern hardware
capabilities

Much developer time spent
building data connectors
and maintaining glue code.



The Tabular Data “Tower of Babel”

il pandas  QBkafka e °

R 555,"‘3

Apache Flink

o< snowflake

G el

. 4 Presto (} oogle {h
§ | b
%

Projects and language
ecosystems utilize a multitude
of in-memory data formats and
file storage formats

Analytics, Data Eng, ML / Al
workloads often dominated by
serialization overhead (can be
80-90+%)

Complex and inefficient data
access by data science tools in
Python and R, etc.



Don’t Hold My Data Hostage —
A Case For Client Protocol Redesign
9 VLDB ‘17

Mark Raasveldt Hannes Muhleisen
Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica
Amsterdam, The Netherlands Amsterdam, The Netherlands
m.raasveldt@cwi.nl hannes@cwi.nl
Netcat (10.25s)
i MySQL - Operation
Time DB2 - 170.9 E%l()lonnection
& > M Query Execution
Query Result Set DBNSE 189.6 e
Execution Serialization PostgreSQL 1
Server - MonetDB -
S ) .
k= g / Hive | I 6299
- = / MongoDB | I es6.5
5 = 0 200 400 600
-.g 5 Wall clock time (s)
< (a7 /
Client ///"

Figure 1: Wall clock time for retrieving the lineitem
table (SF10) over a loopback connection. The
dashed line is the wall clock time for netcat to trans-
fer a CSV of the data.

Result Set
Deserialization



Objectives for an “interoperability utopia”

* Minimize / eliminate serde costs

 Reduce dev time spent on custom “glue code”

* Fast off-the-shelf client libraries for every
language

* Transport efficiently from point to point
without using intermediate file storage

* Avoid “coordinator bottlenecks”



APACHE

ARROW

»

e ASF open source project started February 2016
e Provides

O

Language-agnostic, standardized columnar data format for
efficient, parallel CPU/GPU-based data-frame-like processing
Messaging protocol that minimizes or eliminates data
serialization costs at system or process boundaries

Flight, a state-of-the-art framework for building services that
transport Arrow-based datasets over TCP

An in-development multi-language computation platform



Defragmenting Data

Pandas Drill

T

Copy & Convert
. Copy & Convert
Copy & Convert

Parquet Y

Cassandra

Spark

Copy & Convert

Copy & Convert
HBase

HBase

Cassandra Kudu




A Thriving Open Source Community

e Over 500 unique contributors since
iInception in February 2016

e 1.0.0 Release July 2020 first “format
stable” release

e 11 programming languages
represented

e Inuse by: MSFT, GOOG, AMZN,
NVDA, INTC, BABA, IBM

500 ;

B

300 1

200 1

100 1

Cumulative unique Apache Arrow contributors

00 1

2017

2018

date

2019

2020




installs

Python install metrics

Weekly Installs via "pip install”

6000000 1 project
- pandas

~— pyarrow
- sCikit-learn
- tensorflow

5000000 1 Sk

4000000 -
3000000
2000000

1000000 -

Oct Jan Apr Jul Oct Jan Apr
2019 2020
date

Jul

July 2020 Installs vs. popular data projects

pandas

tensorflow

scikit-learn

oject

&

» oo

torch

r T T T T

0.0 05 10 15 20 25
Total installs (units of 10,000,000) le7

vs some other rising Python projects

D s

dask
-E dash
&
ray
streamlit
6 1006000 2006000 3006000 4006000 500[;000 600(;000 7006000 8006000

Total installs



Some Example Arrow Uses

e N\NAC 7 "
% AS - L
S e © AQH;‘QQ A AN ﬁ;ﬂf ,ﬁi '~
‘ VWA CSNOO\A/ | ‘ "j =
. @?’jﬁ@-l‘*% S IOW {;,J \C
o9

Accelerating Client
Protocol Throughput

Native In-Memory Format for
Columnar SQL Execution +
Arrow Flight for fast data access

p
APACHE & |
SprK TensorFlow Extended

Accelerated User-Defined
Functions for Python and R

Arrow standard input
format for TensorFlow
Datasets

Google
BigQuery

Accelerating Client
Protocol Throughput
and Python Parquet
support

<ANVIDIA

RAP)DS

Data format for

H
pandas

Parquet & Feather
File Import +
Extension Types

22 ISPECLIVE

Data Streaming for
Low-latency Real

CUDA-based GPU Data Time Pivot Tables

Frame processing

(from JP Morgan)



Ursa Labs has been the project’s

biggest driving force o= Wes| 0=
e As ateam, we are the largest single source of Sy »
contributions in the open source project i ®:=.
e \We have been responsible for a large fraction the K
project’s operational tooling (Cl, packaging, release  ¢.-__ =
management, developer tools) R - MR
Cumulative Commits Wes/Team vs. Community
4000 - group Q@ oo @ iorsvandenbossche
1004 " Others
-‘é 1000 Wes + Colleagues | m
§ 2500 W
2 2000 1 T ~—
3 1500 A
§ 1000 - R m
500 1 A
o7 T T - T e =
I I I U L i Top 10 GitHub Contributors

commit_date



Apache Arrow 1.0.0

* Released July 2020

* “Formally” stable protocol, closed to breaking

* Backward and forward compatibility
guarantees for the binary protocol

* Move to Semantic Versioning



Arrow’s Columnar Memory Format

 Runtime memory format for analytical query processing
 Companion to serialization tech like Apache {Parquet, ORC}

 “Fully shredded” columnar, supports flat and nested schemas
* Organized for cache-efficient access on CPUs/GPUs
* Optimized for data locality, SIMD, parallel processing

e Accommodates both random access and scan workloads



Arrow Binary Protocol

receiver

Record batch: ordered collection of named arrays

Streaming wire format for transferring record batch metadata and
data between address spaces
since suitable for zero-copy shared
memory interprocess communication (IPC)
Sequence of “encapulated IPC messages”

Often called “IPC protoco

|”

<€

SCHEMA

DICTIONARY

DICTIONARY

RECORD
BATCH

RECORD
BATCH

sender



Encapsulated protocol (“IPC”) messages

e Serialization wire format suitable for stream-based parsing

Message descriptor

v

\ padding \
T “Rehydrated” data structures

Metadata size or reference memory addresses

end-of-stream marker in the body without any
memcpy operations




Flight - High Speed Network Transport for Arrow

A gRPC-based framework for implementing clients and servers that
send and receive Arrow columnar data natively

* Uses Protocol Buffers v3 for client protocol

* Pluggable command execution layer, authentication

* Low-level gRPC optimizations
 Write Arrow memory directly onto outgoing gRPC buffer
* Avoids typical copying or deserialization cycles

dremio

Key Early Developers

v : YR | :‘ -

URSA LABS

n Lab for Data Sci



Some design requirements
* Straightforward horizontal scalability and parallelization

* Can be used without knowledge of gRPC or Protocol
Buffers

* “Dumb” clients with only the gRPC service definition can
use without knowledge of Arrow columnar format



Advantages of moving to Arrow Flight

o _ Serialize Deserialize
e Serialization-free transport over ntermodiate Wire
Format
Arrow datasets over TCP Server I —————— >I Client
e Up to 10-100x faster end-to-end

than common database network Without Flight

protocols like ODBC, JDBC
e Systems may still reap > 10x >>>

performance benefits by using Server = mm == 3 Client

Flight even if they are not internally

. With Fligh
“Arrow-native” th Flight

NOT STAC BENCHMARKS



Arrow Flight - Parallel Get

Client Planner
GetFlightinfo
>
Flightinfo
-
DoGet Data Nodes
>
FlightData
-
DoGet
>
FlightData
-




Some Flight benchmarks

e 1 GBit ethernet (at home)

O 112.24 MB/s theoretical max

o Achieves 92.17 MB/s
e On localhost
c 4-8 GB/S

NOT STAC BENCHMARKS



Toward an Arrow-native World

* More reusable software components for data access
and data processing

* Cross language boundaries without paying as high a
price

e Fewer inefficiencies from data serialization



Getting involved

* Join dev@arrow.apache.org

* PRs to https://github.com/apache/arrow



mailto:dev@arrow.apache.org
https://github.com/apache/arrow

