
John Ashley, October 2020

THE TRADER
OF TOMORROW:
SMARTER, FASTER, AND MORE
PYTHONIC

2

Timing is everything.

3

Timing is everything.

4

Timing is everything.

Portions (all) of this talk were pre-recorded

in front of a live studio audience.

5

Timing is everything.

Portions of this talk were pre-recorded in

front of a live studio audience.

6

Smarter

NLP, BERT, and domain specific language models; or

“The more you learn, the more you earn.” – Warren Buffet

Faster

Optimizing AI models for inference; or

“Simplify, then add lightness.” – Colin Chapman

More Pythonic

Pointers to various useful bits of accelerated Python; or

“Every sufficiently advanced LISP application will eventually
reimplement Python.” – Hodgson’s Law

The Trader of the Future

7

SMARTER

“The more you learn, the more you earn.”

– Warren Buffet

8

UNDERSTAND GEFORCE NOW USERS

Thousands of gamer comments every day

9

LANGUAGE UNDERSTANDING IMPROVEMENT

SkipThought DisSent
InferSent GenSen

ELMo

BERT

MT-DNN
XLNet

RoBERTa

50

55

60

65

70

75

80

85

90

95

Human Level

ALBERT
GLUE Aggregate Score

Detect grammatical errors

Predict if movie review is
positive or negative

Decide if an abstract correctly
summarizes an article

Sentence-level Semantic
equivalence

Basic reading comprehension

Pronoun disambiguation

Reaching human level

https://gluebenchmark.com/

NOT A STAC

BENCHMARK

10

NATURAL LANGUAGE UNDERSTANDING
BERT universal language model

family, of
this, the, Louis, personally,

telephone

1 = “Initially he supported himself
and his family by farming on a plot
of family land.”

2 = “This in turn attracted the
attention of the St. Louis Post-
Dispatch, which sent a reporter to
Murray to personally review
Stubblefield's wireless telephone.”

NOT_NEXT_SENTENCE

Input: Two sentences with 15%
of words masked out

Output 1: Reconstruct
missing words

Output 2: Is two the next
sentence after one?

https://arxiv.org/abs/1810.04805

11

THE POWER OF TRANSFER LEARNING

Domain Specific ASR - KENSHO & NVIDIA

● Jasper trained on domain

specific financial data

outperformed all leading

ASR models

● Fine tuning was faster and

had more accuracy than

training from scratch

● Enables quick start and has

many benefits for consulting

engagements

12

DOMAIN SPECIFIC -- BIOBERT

Context & Specialized Knowledge Matter

https://ngc.nvidia.com/catalog/resources/nvidia:biobert_for_tensorflow

NOT A STAC

BENCHMARK

https://ngc.nvidia.com/catalog/resources/nvidia:biobert_for_tensorflow

13

HOW TO BUILD YOUR OWN DOMAIN SPECIFIC ASR MODELS
https://ngc.nvidia.com/catalog/containers/nvidia:nemo_asr_app_img

Pre-trained
Greedy Decoder

AM: Finetuned WSJ
Greedy Decoder

AM: Finetuned WSJ
Beam Search LM: WSJ

78%
improvement!

Pre-trained Quartznet model

LibriSpeech (old fiction books)

Finetune Acoustic Model with

Wall Street Journal data

(modern business news)

Train Language Model

with Wall Street Journal

Compare Models’

performance

Export model for

Deployment

NOT A STAC

BENCHMARK

https://ngc.nvidia.com/catalog/containers/nvidia:nemo_asr_app_img

14

FASTER
By IFCAR - Own work, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=18245654

“Simplify, then add lightness.” – Colin Chapman

15

FASTER TREES

https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35

Forest Inference Library

NOT A STAC

BENCHMARK

https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35

16

NVIDIA Fraud

Detection Example

Using PaySim Dataset
Accelerating Inferencing Using

Forest Inferencing Library (FIL)

on NVIDIA GPUs

from cuml import ForestInference

Load the classifier previously saved with xgboost

model_save()

import sklearn.datasets

model_path = 'xgb.model’

Generate random sample data

fm = ForestInference.load(model_path,

output_class=True)

Generate predictions (as a gpu array)

X_test, y_test =

sklearn.datasets.make_classification()

fil_preds_gpu = fm.predict(X_test.astype('float32'))

35X Faster Using FIL

Image credit: https://medium.com/rapids-ai/rapids-forest-inference-
library-prediction-at-100-million-rows-per-second-19558890bc35

NOT A STAC

BENCHMARK

https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35

17

NLP MODELS ARE LARGE
The Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

NOT A STAC

BENCHMARK

18

NOT A STAC

BENCHMARK

19

TENSORRT
Simplification and the addition of lightness.

20

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
Hardware acceleration for reduced precision arithmetic and sparsity

A100
SPARSE
TF32

A100
SPARSE
FP16

A100
FP64

A100
TF32

A100
FP16

20

155

310

V100
FP32

V100
FP16

16

V100
FP64

8 125

310

625

20X

10X

A100
INT8

V100
INT8

60

625

A100
SPARSE
INT8

1250

R
e
la

ti
v
e
 C

o
m

p
u
te

NOT A STAC

BENCHMARK

21

QUANTIZATION
The idea

22

PRUNING
The idea

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.

NOT A STAC

BENCHMARK

23

CUSTOM PLUGINS
Self-attention layer

24

TensorRT 7 FAMILY

ASR, NLU & TTS | 1000+ Kernels | FP32, FP16, INT8

20+ ONNX Ops & Dynamic Shapes

Enhancements Accelerating Speech
https://github.com/Get Started with ASR, NLU, TTS

Today

ASR With Jasper Example

NLU With BERT Example

TTS With Tacotron 2+Waveglow Blog & Example

Compiler Supports RNNs,

Transformers and CNNs

ht

xt

https://devblogs.nvidia.com/how-to-deploy-real-time-text-to-speech-applications-on-gpus-using-tensorrt/

25

TensorRT ONNX PARSER

Optimize and deploy models from ONNX-supported
frameworks to production

Apply TensorRT optimizations to any ONNX
framework (Caffe 2, Microsoft Cognitive Toolkit,
MxNet & PyTorch)

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX
Models

developer.nvidia.com/tensorrt

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

2626

TF-TRT = TF +TRT
Optimize TF inference while still using the TF ecosystem

- Simple API: up to 10x performance gain with little effort

- Fallback to native TensorFlow where TensorRT does not support

27

HOW TO USE?
TF-TRT 2.x Workflow

Existing workflow

Additional steps

Convert to

TF-TRT
SavedModel

TF-TRT

Inference

TensorFlow

Inference
LoadModelSavedModel Predict

LoadModel

Pre-build TRT

engine

(Optional)

Predict

Convert to

TF-TRT
SavedModel

TF-TRT

Conversion
LoadModel SavedModel

28

INT8 TF-TRT API IN TENSORFLOW 2.0
TF-TRT API

from tensorflow.python.compiler.tensorrt import trt_convert as trt

conversion_params = trt.TrtConversionParams(

precision_mode=trt.TrtPrecisionMode.INT8)

converter = trt.TrtGraphConverterV2(

input_saved_model_dir=input_saved_model_dir,

conversion_params=conversion_params)

converter.convert(calibration_input_fn=my_input_fn)

#optionally build TRT engines before deployment

converter.build(input_fn=my_input_fn)

converter.save(output_saved_model_dir)

Jupyter notebook example: https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/TF-TRT-

inference-from-saved-model.ipynb

https://github.com/tensorflow/tensorrt/blob/master/tftrt/examples/image-classification/TF-TRT-inference-from-saved-model.ipynb

29

CONTINUOUS PERFORMANCE IMPROVEMENT

Developers’ Software Optimizations Deliver Better Performance on the Same Hardware

Monthly DL Framework Updates & Stack Optimizations Drive
Performance

cuDNN - Highly tuned standard training routines

cuBLAS - Highly tuned matrix multiplication

DALI – Moves compute intensive pre-processing to GPUs

NCCL – Faster training across multi-GPU architecture

Framework – Latest versions w/ newest features and superior perf

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

5.0x

5.5x

BERT Large DLRM ResNet-50

MONTHLY UPDATES DELIVER FASTER TRAINING PERFORMANCE

v20.05 (V100) v20.07 (V100) v20.07 (A100)

BERT-Large and ResNet-50 v1.5 Training performance with TensorFlow on a single node 8x V100 (32GB) & A100 (40GB). Mixed Precision.
Batch size for BERT: 10 (V100), 24 (A100), ResNet: 512 (V100, v20.05), 256 (v20.07)
DLRM Training performance with PyTorch on 1x V100 & 1x A100. Mixed Precision. Batch size 32768. DRLM trained with v20.03 and v20.07

NOT A STAC

BENCHMARK

30

MORE PYTHONIC

“Every sufficiently advanced LISP application will eventually

reimplement Python.” – Hodgson’s Law

31

CAN WE HAVE FAST DEVELOPMENT AND FAST EXECUTION?

https://rapids.ai/

Yes, if we leverage the whole Python ecosystem

https://rapids.ai/

32

FRACTIONAL DIFFERENCING

https://www.researchgate.net/publication/335159299_GFD_GPU_Fractional_Differencing_for_Rapid_Large-
scale_Stationarizing_of_Time_Series_Data_while_Minimizing_Memory_Loss

https://github.com/ritchieng/fractional_differencing_gpu/blob/master/notebooks/gpu_fractional_differencing.ipynb

Easy & Fast
from numba import cuda

def moving_dot_product_kernel(in_data, out, window_size, weights):

...

[Single loop] Compute fractional differencing values

for i in range(cuda.threadIdx.x + window_size - 1, in_data.size, cuda.blockDim.x):

Compute dot product of preceding window_size rows

rolling_dot_product = 0.0

k = 0

for j in range(i - window_size + 1, i + 1):

rolling_dot_product += in_data[j] * weights[k][0]

k += 1

out[i] = rolling_dot_product

def frac_diff_gpu(df, d, floor=1e-3):

...

gdf_raw = cudf.from_pandas(df).reset_index(drop=True)

gdf_raw.columns = ['in_data']

...

Bring weights to GPU

gdf_weights = cudf.DataFrame()

...

threads_per_block = 518

...

Get fractionally differenced time series through GPU function

gdf_raw_fd = gdf_raw.apply_chunks(moving_dot_product_kernel,

incols=['in_data'],

outcols=dict(out=np.float64),

kwargs=dict(window_size=weights_window_size, weights=weights),

chunks=list(range(0, data_length, trunk_size)) + [data_length],

tpb=threads_per_block)

Bring to CPU for normal manipulation

df_raw_fd = gdf_raw_fd.to_pandas().dropna().iloc[:-1, 1]

return df_raw_fd, weights

NOT A STAC

BENCHMARK

https://www.researchgate.net/publication/335159299_GFD_GPU_Fractional_Differencing_for_Rapid_Large-scale_Stationarizing_of_Time_Series_Data_while_Minimizing_Memory_Loss
https://github.com/ritchieng/fractional_differencing_gpu/blob/master/notebooks/gpu_fractional_differencing.ipynb

33

FRACTIONAL DIFFERENCING
With Numba JIT, even faster!

https://medium.com/rapids-ai/fast-fractional-differencing-on-gpus-using-numba-and-rapids-part-1-b271a6b68b41

allocate the output array

gpu_out = numba.cuda.device_array_like(gpu_in)

…

call the conv kernel

kernel[(number_of_blocks,),

(number_of_threads,),

0,

shared_buffer_size * 8](gpu_in,

weights,

gpu_out,

window,

array_len,

thread_tile,

min_periods)

return gpu_out, weights_out

@cuda.jit

def kernel(in_arr, weight_arr, out_arr, window,

arr_len, thread_tile, min_size):

…

shared = cuda.shared.array(shape=0,

dtype=numba.float64)

…

copy the weights into the shared

for j in range(0, window, block_size):

element_id = tx + j

if (((tx + j) < window) and (element_id < window)):

shared[thread_tile * block_size + window - 1 + tx +

j] = weight_arr[tx + j]

cuda.syncthreads()

slice the shared memory for each threads

start_shared = tx * thread_tile

his_len = min(window - 1,

starting_id + tx * thread_tile)

slice the global memory for each threads

start = starting_id + tx * thread_tile

end = min(starting_id + (tx + 1) * thread_tile, arr_len)

sub_outarr = out_arr[start:end]

sub_len = end - start

conv_window(shared, his_len, sub_outarr,

window, sub_len,

window - 1 + start_shared,

thread_tile * block_size + window - 1,

min_size)

NOT A STAC

BENCHMARK

https://medium.com/rapids-ai/fast-fractional-differencing-on-gpus-using-numba-and-rapids-part-1-b271a6b68b41

34

THANK YOU!

