Hacking the Packet in ASIC with an eFPGA

STAC Presentation, 11/1/2021

Presented by: Dean Cafora Sr. Director of Sales Achronix Semiconductor Dean.Cafora@achronix.com (908)246-9412

Achronix® Data Acceleration

How to Achieve UDP-to-TCP loopback latency of under 10 ns with an eFPGA-enabled ASIC

Agenda:

- 1. SerDes support on next generation large package FPGAs
- 2. eFPGA overview and HFT benefits
- 3. Example HFT ultra-low-latency block diagram
- 4. Overview of the TSMC VCA program
- 5. Highlights of the Achronix eFPGA IP solution

Large Package, High-End FPGA Solutions Move to Support LR SerDes

Port speeds of 25 Gbps and above require forward error correction (FEC) to ensure interoperability

Forward Error Correction for 25G transceivers (IEEE 802.3by)

EE Concerns for large-package, high-end FPGAs

- SerDes drive strength and insertion loss:
 - Drive meaningful PCB trace lengths
 - Avoid FPGA routing congestion close to the package
 - Provide support for connectors and backplanes

eFPGA Overview - Flexible Fabric Configuration and Sizing

- eFPGA resources are designed as building block structures that combine easily
- The customer defines an eFPGA resource mix to best meet their needs
- IP is delivered as a set of physically laid out transistors for efficient ASIC integration

Top Three Benefits of an eFPGA-enabled ASIC for HFT

1. Enables a programmable tick-to-trade solution with best-in-class latency

- 2. Maintain your current technology flow with FPGA updates
- 3. Define your own custom architecture to get the most out of your trading platform

- 100x lower FPGA-to-ASIC latency
- Direct die connectivity
- Custom interconnect

- 10x increase in bandwidth vs. standalone FPGA
- Direct die connectivity

UDP-to-TCP Loopback Latency of Under 10 ns with a ULL Data Path

Not a STAC benchmark

Data Acceleration

Hardware-Proven, Ultra-Low-Latency PMA

DFE not normally used in low latency applications

Low latency option

1000 5 UI from rising edge of TXWCLK# to first bit TXREFCLK CKP PLL & BG Control out of Serializer СКИ TXLOCK < Shared PLL / & Ser/Des width HSTCLK Common Block Bias can be made 8b, 22b, TX#N Analog delay < 1 UI to match FIFO... TXMODE[2:0] Serializer (1:8, 10, 16, Example with 10.3Gbps. TXWCLK# 20, 32, or 40) TX#P 8b word. Loop back Latency = 2.23 ns LPBO# Control, Beacon, OOB Tx: 5 + 1 UI = 0.58ns # = lane number Rx: 8 + 1 UI = 0.87ns RXREFCLK Channel: 8 UI = 0.78ns One CDR PLL/lane PLL & BG Control -8 UI from last bit TSMC 12/16FFC supports RXLOCK# received to rising edge to 16Gbps/lane; 25.8Gbps HSRCLK LPBI# in planning of RXWDCLK# (data RX#P RXMODE ------Deserializer DFE, ready) RXWCLK# (1:8, 10, 16, Eye Monitor, RXD#[39:0] - 40 20, 32, or 40) Presence RX#N Control, Status, Squelch Analog delay < 1 UI

Slide courtesy of Silicon Creations

TSMC Value Chain Aggregators

- TSMC VCA program is well established and looking for new customers
 - Thousand of successfully completed SoC and ASIC developments
 - One-stop shop for ASIC design and manufacturing
 - Support for low-volume, multiproject wafers as well as full wafer production

TSMC VCA Program

Specification Architecture IP Software Physical Design Prototyping **Driver Development**, **Physical Design** Firmware, **RISC-V** Tool **Product Requirement** Architecture Analysis, IP Development, Chain **FPGA & Emulation** & Specification **RTL Design & Verification Selection & Integration Flexible Engineering Relationships** Fabrication Spec Handoff Chip RTL Handoff → Chip Netlist Chip GDS2 Handoff Chip Wafer Fabrication Silicon Bring Up Production Chips **Boards** Test Assembly **Board Design & Packaged ASIC Parts Test & Product** Package & **Production & Post Silicon Validation &** Manufacturing Assembly Logistics Engineering Software Bring-up

Achronix Speedcore[™] eFPGA Compiler: Fast Development of Customer-Specific Speedcore IP

Deliverables Inputs **IP Deliverables Resource Mix** LUT/register count GDSII of eFPGA IP core • . Memory configuration Simulation files • Memory density SI and PI models DSP density Test models Custom eFPGA tiles Timing . • Number of I/O Documentation Aspect ratio **Custom ACE Design Tool Suite** 100+ X10. ¥ ... **Technology Decisions** Instances Ports Pins Nets Paths Site Add Results to Selectio Ports ⇒Pies ≪Nets Foundry ٠ 3+Paths Selection II Technology node 2 3 1 0 9 4 4 k Domain Name Hi... Flops LUTs ALUs Nets Paths Voltage Process node Critical Paths 21 C ID Assignment Metal stack (X=229376, Y=17596416

Over 10 million Speedcore eFPGA IP cores have shipped in customer ASICs

©2021 Achronix Semiconductor Corporation

Thank You

Achronix is here to help you make your next eFPGA enabled ASIC a success!

<u>We look forward to meeting you.</u> Please come to the Achronix Semiconductor breakout sessions to learn more about our Speedcore eFPGA technology.

Presented by: Dean Cafora Sr. Director of Sales Achronix Semiconductor Dean.Cafora@achronix.com (908)246-9412

