Best Practices in Design for FPGA or ASIC

Adam Sherer, Account Technical Executive, Cadence Design Systems

November 1, 2021 cadence

Agenda

N\
@ Goa!: Be Fast and Nimble
\
‘ Designing for Low Latency
|
‘ Verifying Low Latency Designs

[
‘ Becoming Low-Latency Athlete
/

cadence

Be Fast and Nimble with Low Latency Flexible Architectures
The goal is to be out in front with both!

* Remove system latency

- Speed RX/TX ethernet and memory
subsystem but may require ASIC approach

» Add custom processor for flexibility Financial Analytics

- SW retargetable to better analytics or lower (Edge Computing)
latency at the edge maintaining same HW

- May need new IP and engineering resources

* Yet persistent bottlenecks can remain
- Functionally correct but inefficiently coded

Memory Subsystem
- Efficiently coded but scalability/correctness Server Communication

occur

cadence

Coding Approaches for Low Latency

Point of Investment | Approach

* High-level, synthesizable design
Architectural » Early analysis for latency bottlenecks
» Effective digital twin for debug

Detect systemic bottlenecks early
Design retargetable to FPGA or ASIC

» Define coding styles for low-latency

* Refactor elements of design to eliminate Continuously reduce latency within
bottlenecks existing architectures

» Continuously analyze performance

Incremental

» Profile design to identify bottlenecks
Debug * Increase simulation and formal analysis
use to resolve bottlenecks

Achieve project confidence faster to
get accelerator into market sooner

cadence

|dentifying Potential Bottlenecks

e Lab: real-world data but
limited visibility to internal
bottlenecks

 Single simulation: high
visibility into single tests

* Regression simulation:
medium visibility across
test suite

« Recommendation:
Measure performance
weekly

= Open ~ | @ Default View ~ | ¢ Goto ~ | - - Navigation History

Environment Hierarchy Code Blocks

& Instances ¢ Types ¢ Categories - [|Recursive Display: |All ~| callers Fo

Name Self Cumulz Name All Caller # #
Grade Sampled Calls Samplec

£l = Instances

| = I apb_subs.
£ IEi_apb_...
TN

I1E gen... =

= i}

Initial stmt

[} Assertions

[@)} block_3 C—12.24%
[} block_18 o C—J0.23%
[@} block_23 C—10.09% [C—10.09%
[@) block_2 C—10.02% [C—310.02%
[@)} block_16 C—10.01% [C—30.01%

{@} HDL Blocks 40.55%

Blocks
Blocks
Blocks
Blocks
Blocks

Children Code Blocks Hierarchy Properties

[] Recursive Source | Attributes |

Name Self Cumulati|| | Name Self Self+ /ex.../apb_subsystem_top.svp| & ~
) ~ Grade Initial stmt C—10.0% [T 40.55% 317 end = = —

[(no filter) 1 [' no fitter '] [' no fitter " e en 1=l

{IFiapb_subsyst.. 24% 46.6% 319always #5 th_hclk = ~th_hcl

1t ahbi_m0 0.1% 0.1% 320

4 Ill

-

x| |@|Name v~ |~] T &

[(no filter) I I (no filter)] [‘ no ﬁ}tel]

Callees & -
Callee

#
Sampled Calls Sample
[(no filter) } [(no filter) ‘ [\ no ﬂh:—:]

Task run test [CI—140.55% 5036 |-

321 initial begin

322 uvm_config_db#(virtual ua
323 uvm_config_db#(virtual ua
324 uvm_config_db#(virtual ua
325 uvm _config_ db#(v1rtua1 ua

jnm) D
Q| |

KNI

m

cadence

There are Too Many Delays!

Localize data
- Place register files and/or memories physically close to analytics to reduce data access time

Channelize compute
- Replicate analytics to reduce buffering and localize interrupts

Multiple independent clock domains
- Reduce synchronization points to enable parallel computing

Note that increasing asynchronous compute creates risk of non-deterministic
algorithmic execution

- We’'ll come back to this point when discussing formal verification methods

cadence

Apply Performance Best Practices

Train engineers in common coding-for-performance approaches

Eliminate loop invariants
- Move constant computation ahead of loop

Unravel loops
- EX: Implement as parallel computation with single summation

Utilize incremental vs absolute calculations
- Apply compute on just the data component used in the analytics

« Generally trade-off area for speed but keep an eye on physically long data paths

cadence

Multiple Verification Approaches Should be Applied

Design
States)

Iﬁ.

\ 11T 11
| DirectTest

Benefit * Simple to write * Order of magnitude

* Best for strongly faster test generation

sequential test (boot) * Cover more states
with more confidence
(functional coverage)

BTzl * Every state explicitly
written into each test
* Unknown level of

completeness

m Logic Simulation

* Computationally
intense with some
states hit on every
test

Logic Simulation

* Complete verification
in specific tasks (code
coverage, CDC, etc.)
* Much lower compute
and engineering cost
vs simulation

* Design size (100k to
1M registers)

* Pre-defined tasks
built onto engine

* Complete verification
for design features
(bus contention)

* Much lower compute
and engineering cost
vs simulation

* Formal modeling
knowledge

* Comprehensive
assertion writing

Formal Model Analysis Formal Model Analysis

Formal Apps Formal Static m

* Verify bare-metal
and embedded SW
* Verify deep-cycle
HW states

* >1000x faster than
simulation

* Two state logic

* Synthesizable code
required (behavioral
connects via sim)

Hardware Emulation

cadence

Utilize Direct and Randomized Simulation

Random
Stimulus

Randomize packets and data loads
- Models exchange traffic

* Direct stimulus
- Tests specific corner cases

* Value: debug visibility and
performance analysis of exchange-
similar traffic

« Challenge: incomplete analysis of
overall design state-space

Automatic
Checkers

Financial Analytics
(Edge Computing)

Memory Subsystem

Server Communication

cadence

Formal Analysis

Formal tests all possible stimulus, one cycle at a time
- All value combinations on inputs and undriven wires at every cycle
- All value combinations on unitialized registers at first cycle

i1 ! 3
i2 !

ql { 1
qz2

ol ! 3
o2

! 1
L |
8 combinations

Similar to simulating $random | |

' ' 32 combinati
at every input/register for all | combinations ,

possible random values! 128 combinations
l |

512 combinations

cadence

Clock Domain Crossing Problem

« Clock Domain Crossing (CDC) occurs when a signal crosses from one asynchronous clock
domain to another

CLKB Domain

CLKA Domain

Clock Domain
Crossing

N :

CLKB

-

SIG_B

A_reg/Q

SIG_B

(&)

if CLKA & CLKB are Non-deterministic relationship

asynchronous between the clocks causes them
Flop output goes to metastable

to skew continuously resulting in .
tup/hold violati y g state which eventually settles to a
>€7Up/N0°C vio'ations 1 or 0 after an unpredictable delay

| L

CLKA

CLKB

- Similar problems affect Reset Domain
Crossings (RDC) too

cadence

Formal Analysis of Potential CDC Issues

Wide range of synchronizers (nDFF,
muyx, fifo, handshake, user-defined...) Convergence/

L ‘ reconvergence

Comprehensive Q /
Checks ‘

Automatic structural checks

Ei [

Hierarchical analysis

RDC checks

Fle Esit_View Design Bepots Appiceion Toos Window Felp

& coc verification [|
2 FapE-d AR HO PO AEEE B B TOA - s <INPUTS>
onvergence | functional | |
coc reses OUTPUTS>
® funciona | metestabiey | .‘
nce ; = —
/ 7 | source Clock
. © FsM_block.state[1:0] [[rctocoicheck, Trretocol chack Tyor+ [5¢ an_fom, - ‘
@ FsM_block.state[2] @ clock_controll = 17 CoC_ffo_syn.o_daa_no_wite_en fol _ no_wite_on_fall » togk_ 25 ioci .}
nnovative Debu it (oo ool e I P tie, A
- Reconvergance = 9 coc o synco, o e o 2
0 FoM block.buffer sw.., |@ clock_controll 0 O ffo_sync.o_dava_p_rpt_gray_coded p_rpirgray_coded 1 n_contic N
. . Sl O clock_controll 0 coc o synco_dsts wpu_Stable wptr_sibie_festest 1 N
= 0 coc_fifo_sync.o_data_rpu_stable rpu_stable fastest fif * otk el
aiver Handling g s | shEoEs mmm ot :
Q clock_controll o 35 eres
Q clock_controll CDC Comguation _coc mases | viootons | sonot | wavers] | et towr oul
L1l B session 0 | E
: . 13| CoC P Block. Bur TSy, deta_5yre_GBts S tabTe Coe P Black b v o3, eta sy it
Total: 22 Fitered: 13|t or brock. buriow sy, ots sy dota stable coC raH Dlock but Low-syncs: dsto-svne-doto
COC Phases | Violtions]| Signoft] W] 2o ok P e dete i et Stante tor S pleck b L Sy ot sy et

Temmbecie] &

Consle

iarings 1 Erors] _Proot essages

12 © 2021 Cadence Design Systems, Inc. All rights reserved. c 5 d e n c eO

Enforcing Design Practices with Linting

* Recent capabilities
- e T————. - Deadcode debug root-
| i cause analysis

- Improved waiver
T DFT handling
observability -
o Scalability: performance
and memory

DFT controllability

Structural Lint
& DET Checks Sim-synth

mismatch

5 'bO1xXxX:

+ optimization
- FSM deadlock/livelock
Automatic 1 | check performance
Formal Wil | improvements
Checks e

Comprehensive functional checks, violation debug, and
waiver handling based on best-in-class formal analysis

13 © 2021 Cadence Design Systems, Inc. All rights reserved. c 5 d e n c e@

Formal Analysis for Unreachable Coverage: Dead Code Removal

Input: simulation coverage
database and RTL

Output: Unreachable cover
points database

Can run by sim users
without formal expertise

Integrated with vManager to
clearly show unreachable
coverage points

Design
&
Testbench

Xcelium
Simulation
Runs

Jasper
Formal
Analysis

Holes

Block
Expression
Toggle

Unreachable?

no action

Merge

Unreachable
Coverage
Database

METRIC_PORT: O Coverage » @ i_apb_subsystem

Ll 51.9% | Block Covered Grade: 1 57.14% | Expression Covered Grade: CT_148.76% | T

Overall Covered Grade: EE-151.9% | Code Covered

Block Expressionloggle Statement

“Unreachable”

markers in
vManage

Averfafqg;raa’e Uncovered |Line

: =
E:,,
=

\E

ré | Sou

g pb_subsystem_top_for_smc.sv = x

335
336
337

338 ©

339

rce Expression Hierarchy Full Expression

apb_subsystem 0.v x

else if ((((htrans == “TRN_IDLE) | (htrans == “TRN_BUSY)) &
(cs != 1'b0) & hready & ~mis_err &
~dis_err) | r_hresp | (hsel == 1'b0))

smc_litev x smc_ahb_lite_if.v

4 b B
*x 4» B

[[Match Case

‘‘‘‘‘‘

IBEEEE
i o - oo M
- - e - o
222232 S
F T o o o o |
s
- «

(cal

cadence

System Performance Challenges
Latency Critical

|__PVT Sensors__|

PVT Sensors

L2 Cache

\ 4

A\ 4

Interconnect

System Interconnect

L
What is the latency of the
processor clusters to
memory paths including all
domain bridges?]
A

4
\

Interconnect

DO

AP-UART
AP-GP Timer
SRAM 256k

AP Secure Timer
Secure Watchdog
On-Chip ROM 64k
On-Chip ROM 4k

SRAM 32k

Interconnect

MCP 12C

Interconnect

MCP 12C

MCP QSPI

PLLs

Div/Sel

Test Mux

cadence

System Performance Challenges

Real Time Critical

PVT Sensors
PVT Sensors

\ 4

A\ 4

Interconnect

System Iqlerconnect

Interconnect

¢

Debug
Subsystem

AP-UART

5| 2
o) 2
El[= 8
Fl e N
ol 3 =
| g 2
o

<| o (2]
<

X
3=
=
g|a
x|x
ol &
=l <
5|8
N
§lo

o
<]
°
=
[5}
S
2
e
3
(5]
o]
n

X
o
©®
=
<
o
0]

Interconnect

PVT Sensors

MCP 12C

Interconnect

MCP 12C

MCP QSPI

What is the bandwidth and latency
of the paths from real-time IP to

memory?

--- L

PLLs

Div/Sel

Test Mux

cadence

Memory Subsystem Performance Challenges

1

1

:

1

i

i PCle o
: PHY <5
' IS
| 8
| (%) 2
1 o »| S
1 g »

Many streams of traffic with ‘é
different performance a PCle 4.0

demands are merged at the
memory controller.

Are they all receiving the
required service from the
memory subsystem?

L2 Cache

System Interconnect

TBU Interconnect II
Debug
Subsystem

AP-UART
AP-GP Timer
AP Secure Timer
SRAM 256k
SRAM 32k

On-Chip ROM 64k
On-Chip ROM 4k

Secure Watchdog

Interconnect Interconnect

PLLs

Div/Sel

SCP QSPI

MCP 12C
MCP 12C
MCP QSPI

Test Mux

cadence

Metric Driven Verification Created to Quantify Verification
MDV Elements

- Early 2000s: Synthesis and packet-based
design rapidly increased design size Management
- Verification scaled with randomization (UVM :
precursor), coverage, self-checking testbench Analysis
* Metric Driven Verification (MDV) assesses
how comprehensive verification is
- All tests pass
- All code exercised with passing tests T
- All critical state combinations are exercised racking
- lllegal/undefined/unspecified states are not entered
MDYV scales for complex systems
- Data collection from multiple verification engines I

cadence

Next Steps to Being the Low-Latency Athlete

* Do your core work!
- Profile even if you don’t see a performance bottleneck — everyone has a need for speed
- Examine low-latency design approaches and how you can factor those into existing designs

« Maintain your performance health!
- Increase use of simulation and formal methods to measure and correct any bottlenecks

* Break through your plateau!
- Consider new low-latency design approaches when you implement a new architecture

cadence

Cadence is Your
Design Partner

Verification solution: apply
objective analysis to improve
FPGA and ASIC

- Link to Tech Brief

ASIC solution: broadly
adopted in high-speed
comms and mission-critical
applications

Tensilica IP: proven
processor technology used
in autonomous drive and
other high-reliability apps

High-perf IP: proven in
leading comms systems

Services: expert RTL to
GDS design services

Digital Design to
Implementation

RTL Compile/Map

Genus

iSpatial

TAT

.

PPA

\

Innovus
2021

— —
Adv.

Hierarchy \
Nodes

~Machine ™
. Learning

Innovus

Tempus
Voltus
Pegasus

Signoff

Cadence Verification Solution
Find and fix the most bugs per $ compute per day

Smartest

Apps Total Verification Management
vManager™ — Indago™ — VIP — System VIP — Perspec™

NEW

Fastest Formal Simulation Virtual and Hybrid
Engines JasperGold® Xcelium™ Helium™

Emulation
Palladium®

Most Choice
of Compute

Prototyping
Protium™

N

cadence

Cadence IP solutions
Silicon-proven in advanced nodes

Software Tensilica®

optlmlzed Embedded control

Embedded DSP
Integration
optimized

Communications

Correct by
design

Cadence extensive Design IP, Verification IP (VIP), Tensilica® IP,
and memory models to ensure complex SoC designs correctly on first pass

Optimal
configuration

Rapid
integration

Changeable

cadence

cadence

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/aerospace-and-defense/aero-defense-program-confidence-tb.pdf

cadence

https://www.cadence.com/go/trademarks

