
Authors: Stanislav Bratanov, Artyom Shatalin, Vasily Starikov, Ilia Kurakin,
Sergey Vinogradov

2

Agenda
▪ Background on latency outliers and other performance anomalies

▪ Point of view: The best approach to anomaly explanation (hardware and software requirements)

▪ Illustrate the approach through a case study using Intel® Processor Trace (PT) and Intel® VTune™
Profiler

– Using ITT API for marking performance-critical code region

– Analyzing Latency histogram

– Analyzing context switch induced anomalies

– Analyzing kernel induced anomalies

– Analyzing control flow deviations

– Analyzing CPU frequency

3

The big concern in trading: latency outliers

4

Latency outliers  performance anomalies:
Any short-lived sporadic issue that causes unrecoverable consequences

– UX glitch – slow/skipped video frames, failed image tracking

– Unexpectedly long financial transaction

– Long network packet processing/lost packets

Those issues are not visible to traditional sampling-based methods, but

– Cost money and reputation

5

Typical Causes of performance anomalies
▪ Control flow change

– Different amount of work done by different instances of the same task

– Expensive handling of errors or other rare-happening situations, like
memory/storage reallocation

▪ Context switches – synchronization or preemption

▪ Unexpected kernel activity – interrupts, page faults, etc.

▪ Micro-architectural issues – cache misses, branch misprediction, etc.

▪ Frequency drops– low CPU utilization, cooling issues, AVX instructions, etc.

6

What’s required to analyze anomalies?
▪ Extremely granular information from the processor

– Branching, timing, and frequency info logged at nanosecond level

– Make sure your CPU supports this!

▪ A way to analyze the resulting information

– Locate and explain performance deviations in critical code regions

Assembly PT Log

7

Intel CPUs now provide the Data
Intel® Processor Trace, production quality since Skylake

• HW means to trace branching,
transaction, and timing info in a
highly-compressed, low-overhead
manner

• To be extended in the future
with more info to enrich
the picture of SW behavior

PT differentiates between
processes, but not SW

threads. SW tools need to
take care of that

mov eax,offset BasicBlock

call eax

...

BasicBlock:

Loop1:

..do stuff..

jnz Loop1

Loop2:

..more stuff..

jz Loop2

ret
Ack: Beeman Strong

PT saves information on conditional
and indirect branches only.

The rest to be found by static
analysis of disassembly to decode

PT data stream correctly

8

What about analyzing the data?
▪ Intel PT provides an overwhelming amount of data

▪ Tools like Linux perf collect control flow and timing for a given time interval,
but...

– Users must dig through GBs of data to figure out what may be going
wrong

9

A Better Way Would BE (1/2):
▪ Collect PT data only for a specified process or set of processes

– To minimize amount of data traced and data loss

▪ Analyze (or even collect) data at a thread level

– Intel PT only differentiates by process, we need OS scheduling info

▪ Incorporate performance monitoring data

– To get clues as to what’s happening at the microarchitecture level

10

A Better Way Would BE (2/2):
▪ Mark off code regions of interest via a lightweight instrumentation API

– Ideally, have HW instrumentation support, not to trace outside of regions

▪ Analyze control flow and timings only for the marked off code regions

– To minimize data post-processing times and guide users to issue areas

▪ Categorize types of issues users may encounter and provide further guidance

– Ideally, automate comparison between known ‘good’ and ‘bad’ code
instances

11

VTUNE™ Strives to follow that approach:
Requirement VTUNE Comment

Collect PT only for specified processes ✓

Analyze data at the thread level ✓
Turns collection on/off when a
thread is scheduled on/off CPU

Mark off code regions of interest
Via SW API, up to 128

regions
~10 cycles per API call

Incorporate perfmon data
1 perfmon event per

region
~300 cycles per region, need

HW support to do better

Analyze data only for the marked off regions ✓

Categorize issues and automate comparison
Side-by-side
comparison

Working on enriched
timeline, and disassembly

12

Anomaly detection Methodology in VTUNE™
Find and mark off a critical region of code (and optionally select 1 HW event to monitor)

Collect PT in a circular buffer mode
Stop collection when things go wrong

Collect full PT trace if your
workload/storage capacity permits

Select outliers from performance histogram

Compare ‘good’ and ‘bad’ instances of your code region:

F
ix

 a
n

d
 r

e
p

e
a

t

Control
flow?

Kernel
activity?

Context
switches?

Micro-
architecture?

Frequency?

13

Case study – Analyzing performance anomalies
▪ We are going to analyze performance anomalies on Pelikan – unified cache

backend by Twitter https://github.com/twitter/pelikan

▪ We run a client-server benchmark, which sends put/get requests over
network, and analyze full request handling flow on the server side

– Receiving/decoding a request

– Processing a request

– Sending a response

▪ We’ll find outliers among ~600 000 requests and investigate the reasons of
performance anomalies using Anomaly Detection methodology in VTune™

https://github.com/twitter/pelikan

14

ITT API to Mark off performance-critical TASK
Using ITT PTMARK API:

__itt_pt_region region = __itt_pt_region_create(“name”);

for(…;…;…)

{

__itt_mark_pt_region_begin(region);

… code, processing your task …

__itt_mark_pt_region_end(region);

}

Region execution will be grouped under
IPT_MARK_address or “name” node,
that can be expanded into multiple

invocations/iterations (if any)
Begin/end API is directly registered by
Intel PT HW, w/o intermediate trace

files, time-based correlation hassle, etc. __itt_detach();
Call detach API to stop collection

and get a snapshot of PT data

15

ITT API to Mark off performance-critical TASK

Let’s mark it off and see what is
happening inside individual iterations

which run longer than expected.

In our example, a single iteration of
the request processing loop is a
performance critical task.

16

Analyzing latency histogram
The histogram shows how many
instances of a performance-
critical task had which duration
(which we also call ‘latency’)

Fast/Good/Slow
boundaries are

adjustable
X axis shows task instance

latency in seconds

Y axis shows the number of
instances within a given latency bin

17

Analyzing latency histogram

We Set slow boundary to
~1000 µs

Boundary adjustments
need to be applied

Go to “Bottom-up” tab,
select appropriate bin(s),

right-click, and load PT
details. Then proceed to

“Intel Processor Trace
Details” tab

Most of the requests take less
than 100 µs to process, but there
are outliers up to 2400 µs

Let’s see what’s happening inside
outliers with >1000 µs latency

Allows side-by-side comparison of individual instances of marked code regions annotated with
metrics, which helps to detect different types of anomalies

18

Processor trace details – main view
Control flow metrics

Active time on CPU split
into Kernel and User

Time a thread was idle
because of synchronization

or preemption

Wall-clock time of the
code region execution,

that is, Latency

Average CPU frequency
the code region was

executed at

Shows all the
individual instances of
a marked code region.
Can be expanded to

functions and call
stacks

19

Analyzing Context switch induced anomalies
Sort by Wait Time metric which is thread

idle time due to synchronization

Expand instance with significant Wait Time
metric to functions and stacks and see which

stack(s) brought the thread to Idle

Significant time (1.269 out
of 1.318 ms) spent in idle
because of synchronization
context switches

Thread moved to Idle from
a polling loop waiting for
requests

There are not enough
requests in the queue!

20

Analyzing Kernel induced anomalies
Sort by Kernel
Time metric

We don’t show what is happening inside
the kernel. We aggregate kernel time into

an artificial [kernel activity] node

But in many cases stacks which
led to the kernel give a clue

Significant time (566 out of
997 ms) spent in the OS
kernel

The control went to kernel
while receiving a request
and sending a response
over the network

A likely cause of the
slowdown is

the network speed!

Larger values of “Instructions
Retired” often indicate Control

Flow-related Anomalies.

21

Analyzing Control flow deviations (1/3)

Select a specific
instance and choose

“Filter In” from context
menu. Then switch to

Caller/Callee tab

Instead of expanding a specific instance,
let’s use another representation, which
often works better for visualizing
complex control flows - Caller/Callee view

22

Analyzing Control flow deviations (2/3)
Flat profile view shows a function list annotated with self/total metrics

Caller view shows
callers of the

selected function
in a bottom-up
representation

Callee view shows
a call tree from

selected function
in a top-down
representation

23

Analyzing Control flow deviations (3/3)
Call to _slab_evict_one causes slowdown, as that function and its callees take up most time

Here we have cache
eviction. A rare operation
in a normal flow, rather
than an anomaly

We cannot eliminate
evictions, but we can:

• Make them less
frequent by increasing
the cache size

• Try to optimize
eviction processing
with the help of
Caller/Callee view

24

Analyzing CPU FREQUENCY efficiency
CPU frequency drop/boost can affect total latency up to several times

Looking at timeline, request
handling activity is done in
sparse bursts, there’s not
enough overall CPU
utilization, so OS lowers
frequency and then tries to
catch up

Try increasing the number
of requests or disable
frequency changes

Frequency graph for a burst
of marked code regions

25

Case Study Summary
The real-life example above demonstrated many of the typical reasons for performance
anomalies, and using VTune™ Anomaly Detection methodology we were able to give the
following recommendations:
Type of performance anomaly Reason Recommendations

Context switches
Request handler goes to idle while waiting for
a request - not enough requests in a queue

Clients should give enough work for the server

Kernel activity
Receiving a request/sending a response over
network takes up a significant part of the
request handling process

Check network conditions, a faster link between
client and server might be required

Control flow
Request processing takes significantly longer
if cache eviction is required

Adjust the cache size to avoid frequent evictions

Try to optimize eviction handling using the data
provided by VTune. Caller/Callee view gives
enough information to analyze hot paths in
eviction handling

CPU frequency Low CPU utilization may cause frequency drop

If CPU utilization varies with the number of requests,
disable frequency changes in the system to minimize
performance deviations

Microarchitectural issues
Other problems outweighed microarchitectural
issues in this example

Refer to backup slides for an example of
microarchitectural anomalies

26

Next Steps
▪ Give Intel® VTune™ Profiler a try and apply our anomaly detection

methodology to your work:

– https://software.intel.com/content/www/us/en/develop/tools/vtune-
profiler.html

– See backup slides for setting up data collection

▪ Please get back to us with any feedback – questions/suggestions/complaints

– It will help us streamline the analysis and prioritize future work on SW and
HW features!

https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html

27

Conclusion
▪ Nanosecond-level processor tracing (PT) in CPUs is the best way to spot

latency anomalies

▪ Effectively utilizing PT requires lightweight instrumentation and thread-
specific data collection and analysis

▪ Intel PT + VTune + ITT API provide for fine-grain time and event
measurements

– Granularity of microseconds and nanoseconds

– Indispensable for detecting sporadic latency anomalies that are hard to
find with traditional tools

30

INSTRUMENTING CODE with ITT API
• Include header file from VTune:

• #include "ittnotify.h“

• Instrument your code:

• __itt_pt_region region = __itt_pt_region_create(<region name>);

…

• __itt_mark_pt_region_begin(region);

• <code region of interest here>

• __itt_mark_pt_region_end(region);

• Link with ITT API library:

• CC … -L$VTUNE_PROFILER_2020_DIR/lib64 -littnotify -I$VTUNE_PROFILER_2020_DIR/include

31

Configure Collection: RING Buffer

Set up ring-buffer
collection for your

application

Enabled by AMPLXE_EXPERIMENTAL=full-intel-pt

32

Enable kernel profiling and specify code region
parameters: how many regions to load details for and

what’s the maximum expected duration of a code region
– regions outside the specified limits will be discarded

Get command line for your configuration if needed

Configure Collection: PT Config + command line

33

Configure Collection: HW Events
Clone Processor Trace Hotspots

Make sure Cycle-Accurate Mode is on

Enable kernel tracing to profile interrupts,
exceptions and other OS activities

Enable HW event collection

Choose one event to profile, in addition to
CPU_CLK_UNHALTED.THREAD

Configure number of code regions and
their expected durations

34

Analyzing Microarchitecture-related anomalies

Code instances with different
Clockticks/CPU Time, but the

same or close number of
retired instructions, plus no

significant Idle time or kernel
activity, often indicate

microarchitecture-related
anomalies

35

Analyzing Microarchitecture-related anomalies
Let’s collect a

perfmon event
together with PT

Slower code
instances are

affected by micro-
operations from

Microcode
Sequencer

Code instances with different
Clockticks/CPU Time, but the

same or close number of
retired instructions, plus no

significant Idle time or kernel
activity, often indicate

microarchitecture-related
anomalies

36

PROTOTYPE: TMAM metrics per region invocation

In multiple runs, collect TMAM
events, level by level, for each

code region invocation.
Longer instances

suffer from contested
accesses to L3 data!

