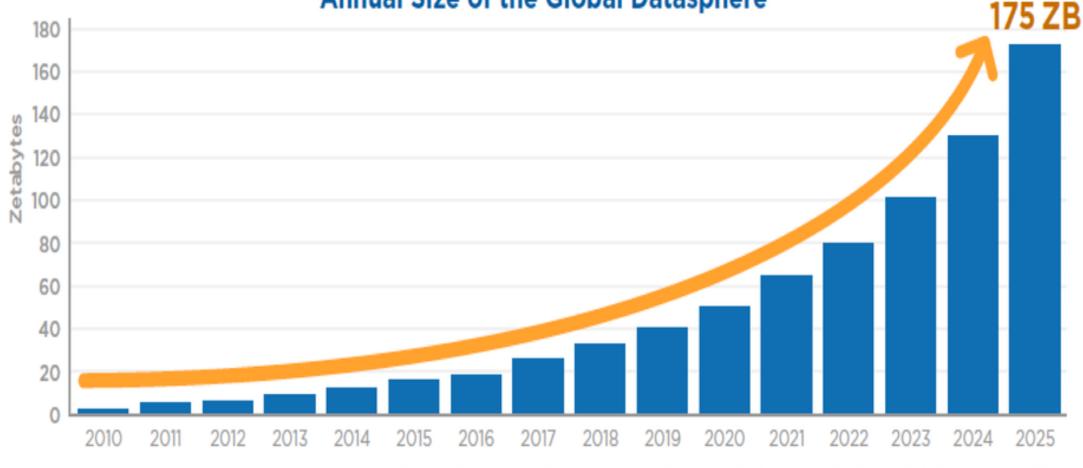
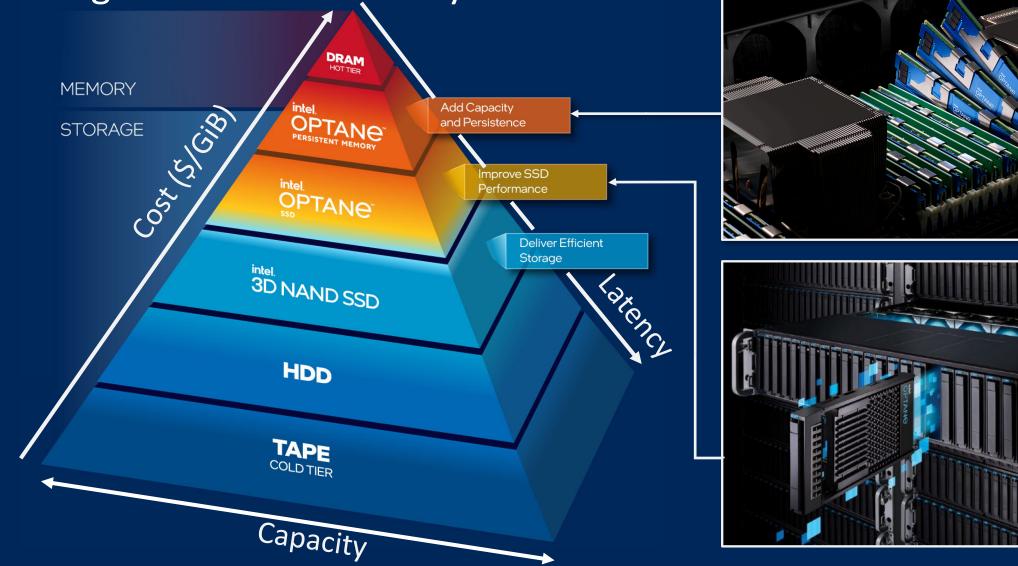
STAC Live 2021


Accelerating Analytics with Intel® Optane™ Technology

Steve Scargall - Persistent Memory Architect, Intel®

Data Growth

Annual Size of the Global Datasphere


Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

John von Neumann

"Ideally one would desire an indefinitely large memory capacity such that any particular 40 binary digit number or word would be immediately - I.e., in the order of 1 to 100 μ s - available and that words could be replaced with new words at about the same rate. It does not seem possible physically to achieve such a capacity. We are therefore forced to recognize the possibility of constructing a hierarchy of memories, each of which has greater capacity than the preceding but which is less quickly accessible."

— "Preliminary Discussion of the Logical Design of an Electronic Computing Instrument' by Arthur Burks, Herman Goldstine, and John von Neumann, 1946" <u>https://library.ias.edu/files/Prelim_Disc_Logical_Design.pdf</u>

Closing the Memory and Storage Divide Data greater than Memory

Intel[®] Optane Persistent Memory Technology

AES 256-BIT encryption Up To 512 GB modules

UP TO higher average memory bandwidth over the previous generation⁺

AES 256-BIT encryption

intel.

Xeon

Secure Erase Up To 512 GB modules

intel.

xeon

Intel[®] Optane[™] PMem 100 series

Secure

Erase

2nd Generation Intel® Xeon® Scalable processors on 2S/4S/8S platform

8-28 **6** channels cores memory **3 TB** 4.5 TB 2,666 MT/s Intel Optane Total system DDR4 + PMem Intel Optane PMem memory per socket* per socket* **18 W Max** thermal design power

Intel Optane PMem 200 series

3rd Generation Intel Xeon Scalable processors on 4S platform

18-28 cores	6 channels memory	
3 TB Intel Optane PMem per socket* 4.5 TB Total system memory per socket*	2,666 MT/s DDR4 + Intel Optane PMem	
eADR	15 W Max thermal design power	

Intel Optane PMem 200 series

3rd Generation Intel Xeon Scalable processors on 2S platform

16-40 cores	8 channels memory		
4 TB Intel Optane PMem per socket** 6 TB Total system memory per socket**	3,200 MT/s DDR4 + Intel Optane PMem		
eADR	15 W Max thermal design power		

+ Based on testing by Intel as of April 27,2020 (Baseline) and March 31, 2020 (New).

* 3 TB Intel Optane PMem = 6 x 512 GB Intel Optane PMem per socket, 4.5 TB System Memory = 6 x 512 GB Intel Optane PMem per socket + 6 x 256 GB

** 4 TB Intel Optane PMem = 8 x 512 GB Intel Optane PMem per socket, 6 TB System Memory = 8 x 512 GB Intel Optane PMem per socket + 8 x 256 GB

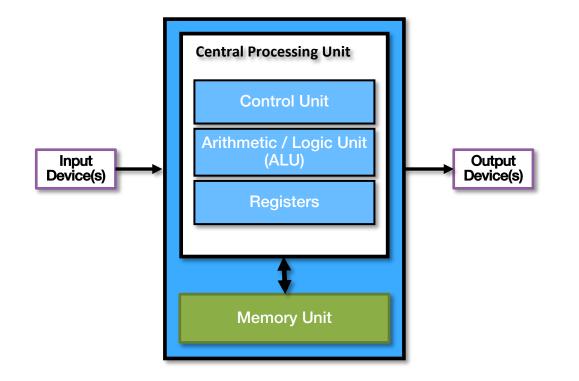
5

KX KDB+ Nano Benchmark

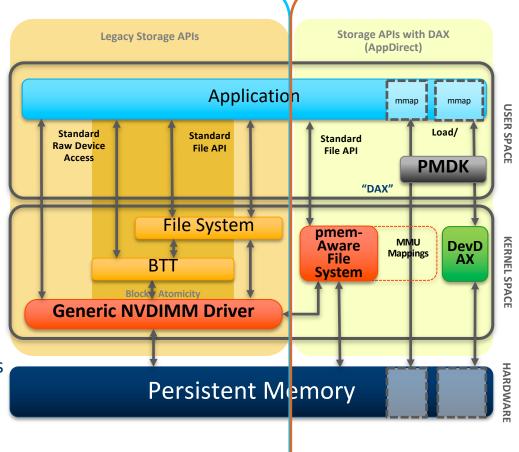
Analytics

- **Performed within 10% of DRAM** for queries involving table joins
- Performed 4× to 12× faster than 24 NVMe storage in RAID configuration
- DRAM performed 3× to 10× faster when performing singlethreaded calculations and aggregations on data
- Data processing and I/O operations
 - Processed 1.6× more data per second than NVMe-only storage where data was read from PMem and written to NVMe storage
 - 2× to 10× faster reading data from files in parallel
 - Seed of reading data similar to page cache (DRAM)
 - Single-threaded file-write performance within 10% in both configurations
 - Multithreaded file-write performance 42% slower

Infrastructure resources


- Required 37% less RAM to complete key I/O-intensive data processing
- **Required no page cache** for querying or retrieving data stored in PMem
- Business benefits
 - PMem is cheaper than DRAM per GiB, and higher density
 - Collect and process more data with higher velocity sensors and assets
 - Accelerate analytics and queries on recent data by **4× to 12×**
 - Reduce cost of infrastructure running with less servers and DRAM to support data processing and analytic workloads
 - Align infrastructure more closely to the value of data by establishing a storage tier between DRAM and NVMe- or SSD-backed performance block storage

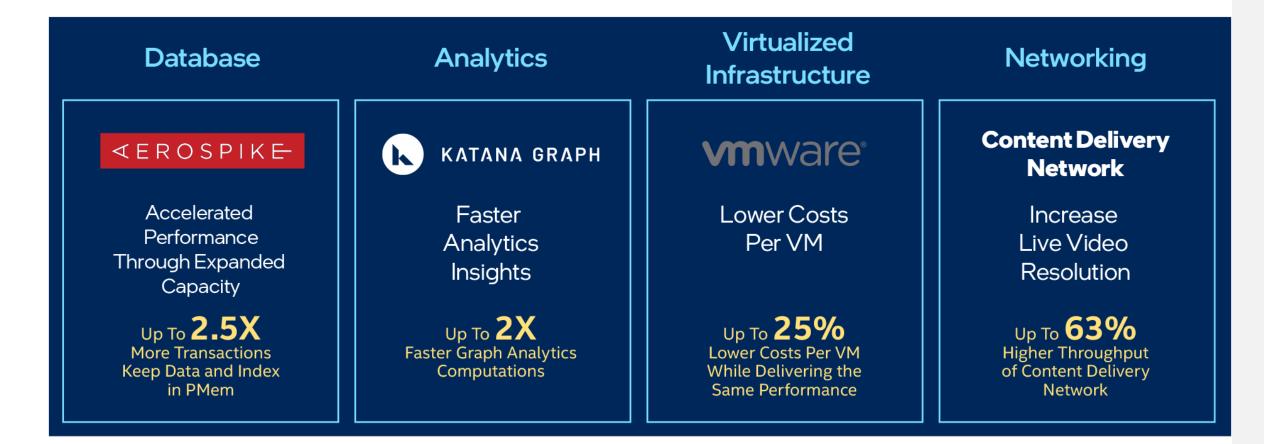
Source: https://code.kx.com/q/architecture/optane-tests/#summary-results


Backup

Von Neumann Computer Architecture

SNIA Programming Model

- No Code Changes Required
- Operates in Blocks like SSD/HDD
 - Traditional read/write
 - Works with Existing File Systems
 - Atomicity at block level
 - Block size configurable
 - 4K, 512B*
- NVDIMM Driver required
 - Support starting Kernel 4.2
- Configured as Boot Device
- High Performance Block Storage
 - Low Latency, higher BW, High IOPs



- Code changes may be required*
- Bypasses file system page cache
- Requires DAX enabled file system
 - XFS, EXT4, NTFS
- No Kernel Code or interrupts
- No interrupts
- Fastest IO path possible

* Code changes required for load/store direct access if the application does not already support this.

*Requires Linux

Current Problems							
DRAM Too Costly	Scale Up Too Expensive	Not Enough Capacity	Operational Inefficiencies	Poor Workload Performance	Storage Too Slow		
Use Intel [®] Optane [™] Persistent Memory for							
Cost S	avings	Productivity		Performance			
DRAM Servers greater than 512 GB	Improve TCO Workloads that need large or persistent memory	Increase Memory Size Reduce software license fees per core	Consolidate Workloads Many VMs, with low CPU utilization	Break I/ O Bottlenecks High disk I/O traffic	Add High- Speed Storage Byte- addressable storage tier		

intel.¹²