

STAC Update: Big data

Michel Debiche Director of Analytics Research, STAC

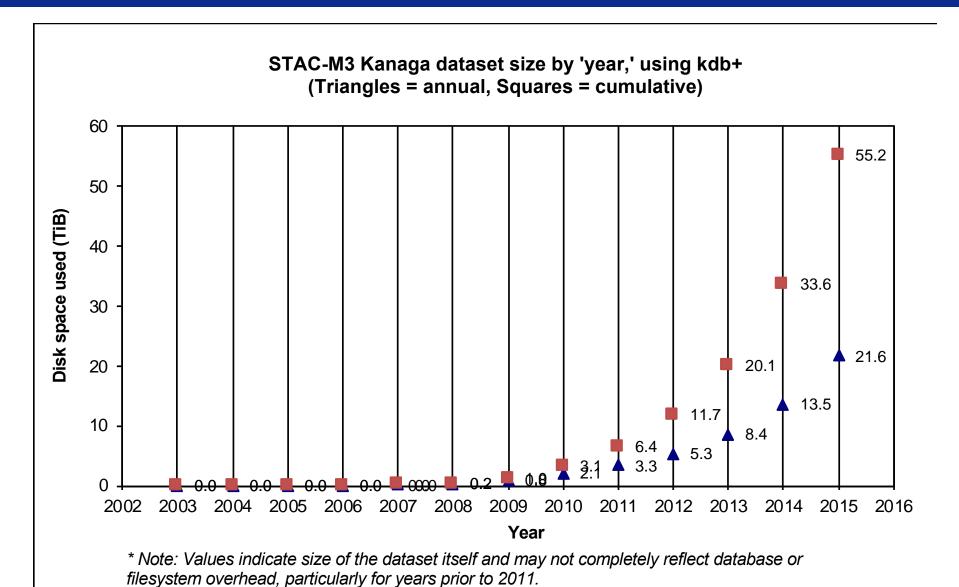
michel.debiche@STACresearch.com

STAC-M3

- Performance benchmarks for enterprise tick analytics
 - Language/DBMS neutral
 - Developed by banks and hedge funds
- Workload:
 - Synthetic data modeled on NYSE TAQ
 - Mix of I/O- and compute-intensive operations (read-heavy)
 - Simulates concurrent access with varying number of users
- 3 Suites
 - Baseline (Antuco): Limited dataset forced to access storage
 - Scale (Kanaga): Large dataset
 - Small in-memory (Shasta): Limited dataset not forced to access storage

STAC-M3 Suites

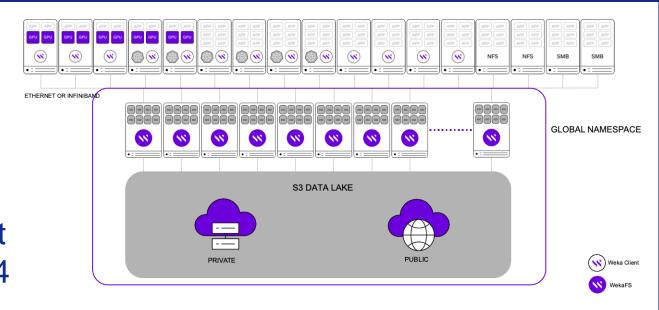
Suite	Computational Complexity	I/O	Input Data Size	Pre-load data?	Concurrency
Baseline (Antuco)	Low to Moderate	Variable	Small (~4 TB)	No	Varies
Small in- memory (Shasta)	Low to Moderate	Very low	Small (~4 TB)	Yes	Varies
Scale (Kanaga)	Low to Moderate	Variable	Large (>50 TB), Variable	Yes	Varies



STAC-M3 Suites

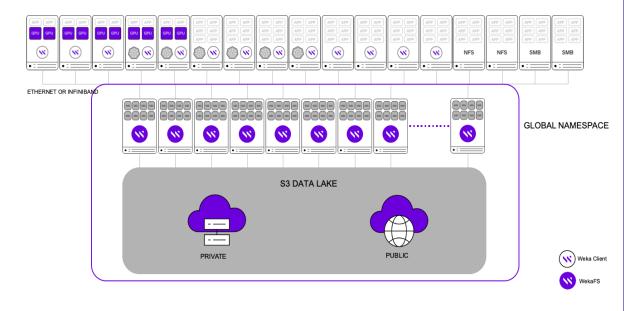
Suite	Computational Complexity	I/O	Input Data Size	Pre-load data?	Concurrency
Baseline (Antuco)	Low to Moderate	Variable	Small (~4 TB)	No	Varies
Small in- memory (Shasta)	Low to Moderate	Very low	Small (~4 TB)	Yes	Varies
Scale (Kanaga)	Low to Moderate	Variable	Large (>50 TB), Variable	Yes	Varies

STAC-M3 Database Scaling for Kanaga Suite

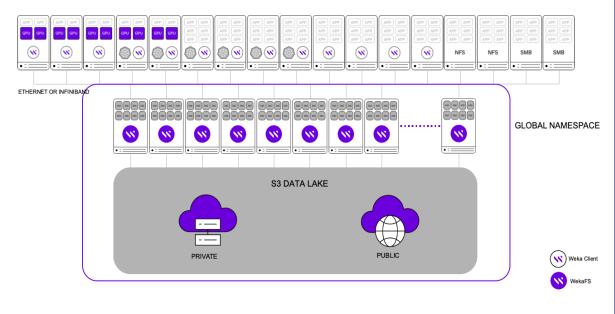

STAC-M3 (continued)

- Wide range of implementations
 - Databases: kdb+, eXtremeDB
 - Clustered file systems, parallel file systems, NFS, flash arrays, NVME over Fabric, directattached SSD, NAND and post-NAND Flash (e.g. Optane)
 - Single database server, database cluster (bare metal and cloud)

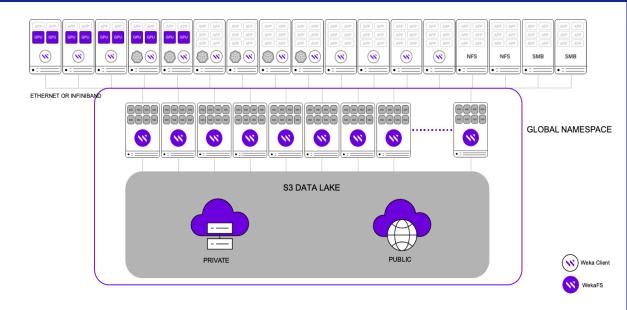
STAC-M3 / kdb+ / WekaIO WekaFS / HPE Proliant clusters


- SUT ID: KDB200401
- Stack:
 - kdb+ 3.6
 - DB server cluster: 14 x HPE Proliant XL 170r Gen10, 2 x Intel[®] Gold 6134 CPUs each
 - Storage cluster: WekaIO[™] WekaFS[™] v3.6.2 Parallel Filesystem (software defined) running on 18 x HPE Proliant XL 170r Gen10 server nodes
- STAC-M3 Antuco & Kanaga suites

STAC-M3 Kanaga results (scaling suite)


- The Weka + HPE based solution outperformed all publicly disclosed results in 11 of 24 mean-response time & 5 throughput benchmarks:
 - 100-user 12-day VWAB: all 5 benchmark years (STAC-M3.β1.100T.YR[n].VWAB-12D-HO.TIME)
 - 50-user 12-day VWAB: benchmark years 4 and 5 (STAC-M3.β1.50T.YR4VWAB-12D-HO.TIME and STAC-M3.β1.50T.YR5VWAB-12D-HO.TIME).
 - Multi-year high bid: all 4 multi-year spans (STAC-M3.β1.1T.[n]YRHIBID.TIME)
 - Throughput: STAC-M3.β1.1T.*.BPS

STAC-M3 Antuco results (baseline suite)


 The Weka + HPE based solution outperformed all publicly disclosed results in the 100-user 12-day nooverlap VWAB mean-response time benchmark (STAC-M3.β1.100T.VWAB-12D.NO.TIME)

Versus SUT ID KDB190430

- Versus a solution involving an allflash NAS and 4 database nodes (KDB190430)
 - was faster in all 24 Kanaga MRT benchmarks;
 - was faster in 15 of 17 MRT Antuco benchmarks, including:
 - 8.8x speedup in **100-user interval stats** (STAC-M3.β1.100T.STATS-UI.TIME)

Vault: STAC-M3 / kdb+ 4.0 / Intel Optane / Red Hat OpenShift

- SUT ID: KDB200515
- Stack:
 - kdb+ 4.0
 - RHEL 7.6 with XFS V5
 - Intel® Data Management Platform with Red Hat OpenShift v3.11
 - 10 x Supermicro SYS-6019U-TN4RT with 2x Intel[®] Xeon[®] Platinum 8280L 2.70GHz
 - 10 x 6TB Intel[®] Optane DCPMM
- STAC-M3 Antuco & Kanaga suites

STAC Streaming: Review

- Working on benchmarks for streaming ingest and streaming analytics
 - Capacity
 - Latency
 - Impact on historical queries
- Starting with market data ingest
- Will add variant for telemetry data
- Did a market data POC (see Fall '19 STAC Summits)

STAC Streaming: Updates

- Working group has agreed on spec requirements for market data
- Tools are nearly ready
- Testing with open source and proprietary time series databases
- Expect initial results this summer
- Will progress telemetry data and streaming analytics in parallel

