
Getting the most from Haswell

Arch D. Robison

Sr. Principal Engineer, Intel

(4th Generation Intel® Core™ microarchitecture)

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

FMA
FP Multiply

2xFMA
• Doubles peak FLOPs
• Two FP multipliers

benefit legacy

Haswell Execution Unit Overview

Unified Reservation Station

P
o

rt 1

P
o

rt 2

P
o

rt 3

P
o

rt 4

P
o

rt 5

Load &
Store Address

Store
Data

Integer
ALU & Shift

Integer
ALU & LEA

Integer
ALU & LEA

FMA FP Mult
FP Add

Divide

P
o

rt 6

P
o

rt 7

Integer
ALU & Shift

Store
Address

P
o

rt 0

New Port for Stores
• Frees ports 2 & 3

for loads

Branch

New Branch Unit
• Reduces port0 conflicts
• Useful for branchy code

4th ALU
• Great for integer workloads
• Frees ports 0 & 1 for vector

SIMD
Shuffle

Branch

SIMD Int
Multiply

SIMD
Logicals

SIMD
Shifts

SIMD Int
ALU

SIMD Int
ALU

SIMD
Logicals

SIMD
Logicals

2

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

New Instructions in Haswell

3

11/4/2013

Group Description

A
V

X
2

SIMD Integer

Instructions
promoted to 256 bits

Extend vector integer instructions to 256 bit.

Gather Load elements from vector of indices

Shuffling and

Data Rearrangement Blend, shift, and permute instructions

FMA Fused Multiply-Add

Bit Manipulation and

Cryptography

Improve performance of bit-stream manipulation

and decode, large integer arithmetic, and hashes

TSX=RTM+HLE Transactional Memory

Others MOVBE: Load and store big-endian data

INVPCID: Invalidate processor context id

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel ® Parallel Studio XE 2013

Leveraging Vector Instructions

4

Intel® Parallel Inspector

Intel® Parallel Advisor

Intel® VTune™ Amplifier

Intel ® C++Composer XE 2013

Intel® Cilk™ Plus

auto vectorization Intel® MKL

AVX intrinsics

Intel® IPP

c
o
d
e
 c

h
a
n
g
e
s

Cilk Notation

#pragma simd

Array Notation

OpenMP*

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

New Operations in Intel® AVX2

Intel AVX2 introduces 20+ new operations to already rich
vector instruction set, plus Gather & FMA

New Instruction Description

VPERM2I128
VEXTRACTI128
VINSERTI128
VPMASKMOV{D,Q}

Integer versions of Intel® AVX cross
lane permutes & masked load/stores

VPERM{Q,PD}
VPERM{D,PS}

256-bit “Cross-lane” Permutes

VPSLLV{D,Q}
VPSRLV{D,Q}
VPSRAVD

Per Element Variable Vector Shifts

VPBLENDD Element blend

VPBROADCAST{B,W,D,Q}
VBROADCAST{SS,SD}

New Broadcasts

Include register-to-register broadcasts

5

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

High-Level Programming

6

11/4/2013

void foo(int c[], int b[], int a[], int n) {
 c[0:n] = b[0:n] << a[0:n];
}

Array
Notation

void foo(int c[], int b[], int a[], int n) {
 #pragma omp simd
 for(int i=0; i<n; ++i)
 c[i] = b[i] << a[i];
}

OpenMP 4.0
simd

icc -xCORE-AVX2 -O3 -openmp Intel® Compiler 14.0 recommended

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

New Gather Instructions

Gather = Vector load: A[B[i]]

• [Index]Scale + Base

• 32b or 64b elements

• 32b or 64b indices

Mask: Elements to be gathered

• Complete when Mask=0

Should be used with caution
depending on

• Value of mask

• Index reuse

• Number of elements


Scale:
1,2,4,8

Base
(GPR) + + + + + + + +

Memory

Result
A[B[i]]

Vector of
Indices

Fundamental building block for sparse, indirect memory
accesses, easing vectorization

7

      

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

High-Level Programming

8

void bar(float c[], float b[], float a[], int j[], int n) {
 #pragma omp simd
 for(int i=0; i<n; ++i)
 c[i] += a[j[i]]*b[i];
}

void bar(float c[], float b[], float a[], int j[], int n) {
 c[0:n] += a[j[0:n]]*b[0:n];
}

Array
Notation

OpenMP 4.0
simd

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

FMA: Fused Multiply-Add

• Computes ±(a×b)±c with only one rounding

– Increased accuracy compared to MUL & ADD

– Latency same as for × alone.

• 2xFMA units  Double peak FLOPs

– Doubled cache bandwidth to feed FMA

FMA provides
improved accuracy
and performance

All products, computer systems, dates and figures specified are preliminary
based on current expectations, and are subject to change without notice.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

Peak FLOPS/clock

P
e
a
k
 C

a
c
h
e
 b

y
te

s
/c

lo
c
k

Banias

Merom

Sandy Bridge

Haswell

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

High-Level Programming

10

void bar(float c[], float b[], float a[], int j[], int n) {
 #pragma omp simd
 for(int i=0; i<n; ++i)
 c[i] += a[j[i]]*b[i];
}

void bar(float c[], float b[], float a[], int j[], int n) {
 c[0:n] += a[j[0:n]]*b[0:n];
}

Array
Notation

OpenMP 4.0
simd

FMA useful for
scalar code too.

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
11

SIMD (Elemental) Functions

Annotation for creating clones suitable for vectorized call sites.

#pragma omp declare simd linear(a), uniform(b)

void bar(float* a, float* b, int j) {

 if(*a>0)

 *a = b[j];

}

__declspec(vector(linear(a),uniform(b)))

void bar(float *a, float *b, int c, int d);

void foo(float* a, float* b, int* c, int* d, int n) {

#pragma omp simd

 for(int i=0; i<n; ++i)

 bar(a+i, b, c[i]+d[i]);

}

Callee

Caller

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

New Bit Manipulation Instructions (BMI)

Category Name Operation

Bit-field
manipulation

BZHI Zero High Bits Starting with Specified Position

SHLX
New Variable Shifts
(non-destructive, have load+operation forms,
no implicit CL dependency, and no flags effect)

x<<y

SHRX x>>y

SARX x>>y

BEXTR
Bit Field Extract using a pair of parameters in a single register
(use BZHI/SHRX combo for inputs in independent regs though)

PDEP Parallel Bit Deposit (bit scatter)

PEXT Parallel Bit Extract (bit gather)

ANDN Logical And-Not ~x&y

Leading and
trailing zero bit

counts;

Trailing set bit
manipulation

TZCNT Trailing Zero Bits Count

LZCNT Leading Zero Bits Count

BLSR Reset Lowest Set Bit x-1 & x

BLSMSK Get Mask Up to Lowest Set Bit x-1 ̂ x

BLSI Isolate Lowest Set Bit -x & x

Improved
multiply and

rotate

RORX Rotate Without Affecting Flags

MULX Unsigned Multiply Without Affecting Flags

12

11/4/2013

15 new GPR Instructions to accelerate bit manipulation
and compression routines

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Improving existing primitives

– Faster LOCK-prefixed instructions

– A focus in recent generations

• Locks still limit concurrency

– Fine-grained locking can help.

– But is tricky to get right.

• Intel® TSX

– Enables concurrent execution of
transactions that do not conflict.

– Performance of fine-grained locks
with effort of coarse-grained locks

Synchronization Improvements

0

5

10

15

20

25

30

35

40

Yonah

Merom

Sandy
Bridge

Haswell

Cached Lock
Performance

M
in

 C
y
c
le

s
/

L
o
c
k

Intel® TSX exposes parallelism through Transactions

13

11/4/2013

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Example Intel® TSX Execution

No serialization and no communication if no conflicts

Lock: Free

Hash Table

Thread 1 Thread 2

Acquire Acquire

A

Critical
section

B

Critical
section

Release

Release

Lock remains

free throughout

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Two interfaces to Intel® TSX

Hardware Lock Elision (HLE)

• Legacy-compatible approach

• Looks like plain locks to old hardware

Restricted Transactional Memory (RTM)

• Flexible interface for creating your own transactions

• New instructions – not backwards compatible

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Hardware Lock Elision (HLE)

New instruction prefixes

 XACQUIRE prefix on instruction that locks

 XRELEASE prefix on instruction that unlocks

Hardware without TSX:

 prefixes ignored

Hardware with TSX:

 Tries to execute critical section transactionally

 Concurrency possible if there is no data conflict

 Abort causes a re-execution with a lock

Useful for Exploiting Transactions
in Backwards Compatible Way

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Restricted Transactional Memory (RTM)

17

11/4/2013

XBEGIN fallback Start transaction

XEND End transaction

XABORT abortcode Abort transaction

XTEST Inside a transaction?

There is no guarantee that a transaction will ever succeed!

• Must provide a fallback path (usually a real lock)

Read Chapter 12 of the latest Intel® 64 and
IA-32 Architectures Optimization Reference
Manual for advice on using Intel® TSX.

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

avoid “Groundhog Day”

avoid “Lemming Effect”

transactional
execution

rollback

Usage from C/C++ using Intrinsics

retry:
 if(_xbegin()==~0u) {
 ... critical section...
 if(another thread acquired the lock)
 _xabort(errorcode)
 else
 _xend();
 } else {
 wait until lock is free;
 if(seems worth another try)
 goto retry;
 acquire lock
 ... critical section ...
 release lock
 }

18

11/4/2013

Need icc ≥12.1
or gcc ≥ 4.8
or Visual Studio ≥ 2012

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Library Support for Lock Elision

19

11/4/2013

void foo()
 ...
 {
 tbb::speculative_spin_mutex::scoped_lock lock(mutex);
 ...critical section...
 // Destructor implicitly releases lock
 }
 ...
}

tbb::speculative_spin_mutex mutex;

Intel® Threading Building Blocks
(Intel® TBB)

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
20

Summary

Haswell cores are wide

• 256-bit vector units

• Lots of implicit instruction-level parallelism

Intel® Transactional Synchronization Extensions (Intel® TSX)

• New programming paradigm

Expressing parallelism is important!

• SIMD

– OpenMP* 4.0 simd

– Array Notation

• Threading

– OpenMP*

– Intel® Cilk™ Plus

– Intel® Threading Building Blocks

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Resources:

Intel® Parallel Studio XE Suites
http://software.intel.com/en-us/intel-parallel-studio-xe

Intel® AVX1, AVX2, BMI and TSX:
http://www.intel.com/sdm

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) and
beyond:
http://www.intel.com/software/isa

Discussion forum:
http://software.intel.com/en-us/forums/intel-isa-extensions

Intel® Software Developer Emulator (SDE)
Emulate new instructions before hardware is available
http://www.intel.com/software/sde

Intel® Architecture Code Analyzer

 http://software.intel.com/en-us/articles/intel-architecture-code-analyzer

http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://software.intel.com/en-us/intel-parallel-studio-xe
http://www.intel.com/sdm
http://www.intel.com/software/isa
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://software.intel.com/en-us/forums/intel-isa-extensions
http://www.intel.com/software/sde
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer

22

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Core Cache Size/Latency/Bandwidth

Metric Nehalem Sandy Bridge Haswell

L1 Instruction Cache 32K, 4-way 32K, 8-way 32K, 8-way

L1 Data Cache 32K, 8-way 32K, 8-way 32K, 8-way

 Fastest Load-to-use 4 cycles 4 cycles 4 cycles

 Load bandwidth 16 Bytes/cycle
32 Bytes/cycle

(banked)
64 Bytes/cycle

 Store bandwidth 16 Bytes/cycle 16 Bytes/cycle 32 Bytes/cycle

L2 Unified Cache 256K, 8-way 256K, 8-way 256K, 8-way

 Fastest load-to-use 10 cycles 11 cycles 11 cycles

 Bandwidth to L1 32 Bytes/cycle 32 Bytes/cycle 64 Bytes/cycle

L1 Instruction TLB
4K: 128, 4-way
2M/4M: 7/thread

4K: 128, 4-way
2M/4M: 8/thread

4K: 128, 4-way
2M/4M: 8/thread

L1 Data TLB
4K: 64, 4-way

2M/4M: 32, 4-way
1G: fractured

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

4K: 64, 4-way
2M/4M: 32, 4-way

1G: 4, 4-way

L2 Unified TLB 4K: 512, 4-way 4K: 512, 4-way
4K+2M shared:

1024, 8-way

All caches use 64-byte lines

Intel® microarchitecture code names Nehalem, Sandy Bridge, and Haswell

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using

specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

24

11/4/2013 24

