
QuantLib on Intel

Xeon Phi
Thomas Rodgers

FCA Design

rodgert@twrodgers.com

mailto:rodgert@twrodgers.com

My background

• Disclaimer - I am not a quant

• C++ developer with > 20 years of experience in Finance

• Member of the C++ Standards Committee

• SG1 - Concurrency and Parallelism

• SG14 - Games, HFT, Low-Latency systems

• My interest in this project is how to make C++ a better tool

for heterogenous multi-core development

Project Background

• Work in support of research by Prof. Matthew Dixon, Stuart

School of Business, Illinois Institute of Technology

• Help Quants target highly parallel, or vector-parallel

architectures, without needing a deep background in

vector/parallel software engineering

• Xeon Phi is one such target architecture

• Need a source of publicly releasable financial model codes

• QuantLib is one possibility

Knights Landing
Die Layout

3
 D

D
R

4
 C

h
a

n
n

e
ls

3
 D

D
R

4
 C

h
a

n
n

e
ls

EDC EDC EDC EDC

EDC EDC EDC EDC

misc.

Tile

Tile

Tile

DDR MC

Tile

Tile

Tile

Tile

Tile

Tile

DDR MC

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

PCIe

Gen3
DMI

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

2 x 16

1x4

x4

DMI

Knights Landing

Die Features

• Chip organized around the concept of a Tile, each consists of -

• 2 cores, 32kb L1 Instruction and 32kb L1 Data cache per core

• 2 vector processing units per core, total 4 per Tile

• 1M of L2 cache shared between the two cores

• All Tiles are connected to a 2D mesh with > 700GB/s bandwidth

• Organized into rows and columns of “half” rings that fold upon

themselves at the endpoints

• Enforces a “YX routing” rule, transactions travel vertically to target row,

then travel horizontally to destination.

Knights Landing

Die Features

(cont)

• 2 Memory controllers with 3 DDR4 channels each

• Maximum of 384GB of DDR4

• Aggregate DDR4 bandwidth is ~90 GB/s

• 8 MCDRAM (High Bandwidth Memory) devices, each 2GB capacity

• Each MCDRAM is connected to it’s own memory controller (EDC)

• Aggregate MCDRAM bandwidth is > 450 GB/s

• Can be used in cache mode, flat mode (shares address space with

DDR), or a mix of the two

Knights Landing

Core details
• Each Knights Landing die contains 36 tiles of 2 cores each for

a total of 72 cores per die

• Each KNL core is based on a significantly modified Atom

processor (Silvermont)

• Features -

• ISA compatible with Haswell (except TSX support)

• Support for up to 4 simultaneous threads (hyperthreading)

• Out of order execution

Knights Landing

Core details

(cont)

• Each Knights Landing tile includes two Vector Processing Units per core for a total of

144 VPUs per KNL die

• Each VPU can perform 16 double precision, or 32 single precision floating point

operations

• Each VPU supports an extended 512 bit instruction set, aka AVX-512

• Includes “foundation” support for floating point and scalar vector operations, as well

as dedicated support for exponentiation, prefetch, and conflict detection

• AVX-512 ISA support is available via compiler intrinsics in ICC, GCC, and Clang.

• Support for AVX-512 compiler intrinsics are also available in ICC, GCC, and Clang

• see https://software.intel.com/sites/landingpage/IntrinsicsGuide for more

information

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Knights Landing

Configurations

• The Knights Landing processor, differs from the previous

generation Knights Corner processor -

• Standard Intel Architecture device

• Fully capable of booting stock operating systems

• Currently using CentOS 7.4

Knights Landing

Boot-time Configuration
• Unlike standard Intel Xeon CPUs the Knights Landing CPU supports

several boot-time configuration parameters

• Cluster Mode - Configures the on chip mesh in one of

• all-to-all mode (used with mixed DRAM configurations)

• quadrant mode (default)

• Sub-NUMA clustering (SNC)

• Memory Mode -

• cache, flat, hybrid

Benchmark Index (MIPS)

Benchmark Sample

Benchmark Sample

Observations

• The benchmark suite is single threaded

• Aggregate single core performance for Phi vs. a typical Intel

Core/Xeon is lower, this result is generally expected, but…

• Some individual models >2x slower

• This appears at least in part due to how the QuantLib

benchmark suite is structured

• Significant amount of scalar set-up code inside deeply

nested loops

It’s Full of Cores…

The challenge is using them.

Scaling up

• Parallelization

• 72 physical scalar cores

• High bandwidth on-chip mesh

• High bandwidth CPU adjacent memory (MCDRAM)

• Vectorization

• Up to 16 double or 32 single precision floating point operations

per vector unit, per clock

• Two vector units per physical core

Intel Compiler Collection

Auto Parallelization

• Using #pragma directives to guide code generation

• Can parallelize candidate loops with either OpenMP or

TBB

• OpenMP for homogenous workloads

• TBB for variable workloads

Auto parallelization is not

always a win

What’s going on here?

• Initial guess is that there’s not enough work per thread to

offset the communication overhead

Intel Compiler Collection

• Compiler vectorization reports

• -qopt-report, -qopt-report-phase

• Vectorization Advisor

• Extensive tools for analyzing and recommending vectorization

opportunities

• Not explicitly tied to code generated by the Intel Compiler

• VTune profiler

• Sample based and “uncore” counter profiling

What’s going on here?

• VTune Says -

• ~21 of 272 logical cores utilized, ~7.8% utilization

• ~57% time spent in serial code

• ~50% scalar/50% SIMD instruction mix

• Significant fraction of parallel time is load-imbalanced

• 83% of pipeline slots remain empty

What’s going on here?

• Top 3 serial hotspots -

• QuantLib::TrinomialTree::TrinomialTree

• QuantLib::TreeLattice<QuantLib::OneFactorModel::Sho

rtRateTree>::computeStatePrices

• malloc

QuantLib is a non-trivial

codebase

• Approximately 2280 source files, ~300k lines of code

• Makes heavy use of allocations, and shared pointers

• Difficult to optimize without significant restructuring

• Detailed optimization of QuantLib is outside the scope of

the work for this project

Narrowing the scope

• Currently evaluating optimization of

• Heston model

• SVD model w/parallel RNG

• Stripped down implementations, not part of QuantLib

• Explicit use of Intel’s Math Kernel Libraries where

appropriate

Early results

Scaling individual models

• Heston Model

• Peak core utilization ~14%,

• 75% scalar to 25% SIMD instruction mix

• SVD & Parallel RNG

• Peak core utilization ~19%

• 100% Packed SIMD instruction mix

Next steps

• Long term goal is not focused on individual model

optimization

• Enable Quants to describe compute intensive problems

in terms of high level composition of numerical

algorithms

• Focus evaluation on scaling up compute utilization via

explicitly parallel work partitioning

Next steps (cont)

• Custom C++ Allocators

• Using C++ vector types backed by MCDRAM for

frequently accessed data

• Align vector types on cache-line boundary

• Non-Temporal Store

• Avoid perturbing cache with data that is only ever

written (e.g. result sets)

