QuantLib on Intel
Xeon Phi

Thomas Rodgers
FCA Design
rodgert@twrodgers.com

mailto:rodgert@twrodgers.com

My background

Disclaimer - | am not a quant

C++ developer with > 20 years of experience in Finance
Member of the C++ Standards Committee

® SG1 - Concurrency and Parallelism

* SG14 - Games, HFT, Low-Latency systems

My Interest In this project is how to make C++ a better tool
for heterogenous multi-core development

Project Background

®* Work In support of research by Prof. Matthew Dixon, Stuart
School of Business, lllinois Institute of Technology

®* Help Quants target highly parallel, or vector-parallel
architectures, without needing a deep background in
vector/parallel software engineering

® Xeon Phi Is one such target architecture

®* Need a source of publicly releasable financial model codes

® QuantLib is one possibility

2x16 x4

Knights Landing

Die Layout

Knights Landing
Die Features

® Chip organized around the concept of a Tile, each consists of -
® 2 cores, 32kb L1 Instruction and 32kb L1 Data cache per core
® 2 vector processing units per core, total 4 per Tile
® 1M of L2 cache shared between the two cores

® All Tiles are connected to a 2D mesh with > 700GB/s bandwidth

® Organized into rows and columns of “half’ rings that fold upon
themselves at the endpoints

®* Enforces a “YX routing” rule, transactions travel vertically to target row,
then travel horizontally to destination.

Knights Landing
Die Features
(cont)

® 2 Memory controllers with 3 DDR4 channels each
®* Maximum of 384GB of DDR4
® Aggregate DDR4 bandwidth is ~90 GB/s

* 8 MCDRAM (High Bandwidth Memory) devices, each 2GB capacity
®* Each MCDRAM is connected to it's own memory controller (EDC)
®* Aggregate MCDRAM bandwidth is > 450 GB/s

® Can be used in cache mode, flat mode (shares address space with
DDR), or a mix of the two

Knights Landing
Core detalls

®* Each Knights Landing die contains 36 tiles of 2 cores each for
a total of 72 cores per die

® Each KNL core is based on a significantly modified Atom
processor (Silvermont)

®* Features -
® |SA compatible with Haswell (except TSX support)
® Support for up to 4 simultaneous threads (hyperthreading)

® Qut of order execution

Knights Landing
Core detalils
(cont)

® Each Knights Landing tile includes two Vector Processing Units per core for a total of
144 VPUs per KNL die

®* Each VPU can perform 16 double precision, or 32 single precision floating point
operations

® Each VPU supports an extended 512 bit instruction set, aka AVX-512

Includes “foundation” support for floating point and scalar vector operations, as well
as dedicated support for exponentiation, prefetch, and conflict detection

AV X-512 ISA support is available via compiler intrinsics in ICC, GCC, and Clang.
Support for AVX-512 compiler intrinsics are also available in ICC, GCC, and Clang

®* see https://software.intel.com/sites/landingpage/IntrinsicsGuide for more
Information

https://software.intel.com/sites/landingpage/IntrinsicsGuide

Knights Landing
Configurations

®* The Knights Landing processor, differs from the previous
generation Knights Corner processor -

® Standard Intel Architecture device

® Fully capable of booting stock operating systems

® Currently using CentOS 7.4

Knights Landing
Boot-time Configuration

® Unlike standard Intel Xeon CPUs the Knights Landing CPU supports
several boot-time configuration parameters

® Cluster Mode - Configures the on chip mesh in one of
¢ all-to-all mode (used with mixed DRAM configurations)
® guadrant mode (default)
® Sub-NUMA clustering (SNC)

®* Memory Mode -

® cache, flat, hybrid

W Quantlic Benchmark Index

BGhz Cora i7/Clang KML/GCO KMLACC
-xMIC-AVAE12)

Benchmark Index (MIPS)

B 2.8Ghz Core iT/Clang U KMLGCE KMLICE

Americanlplion:FdAmericanGreaks
BaskeltDption::TavellaValues
DividendOption::FdEuropeanGreaks
DividendOption::FdAmericanGreeks
EuropaanOption::impliedyal
FdHestonTest:testFdmHestonfAmerican
HestonModel ::DAXCalibration

HandomMumber::Mersanna TvistarDescrapancy

mww

ShortRateModeal::Swaps

ol

275

£n
&
£
&

1100

Benchmark Sample

B 2.8Ghz Caore iT/Clang U KNLGCO KMNLACE
[-=MIC-AVXE D)

Bateshicdel: DAXCalioration

DigitalOption::MCCashAtHit

EuropeanOption::FdMcEngines

I

HestonModal::DAXCalibration

InterpolationTest:testSabrinterpolation =

Benchmark Sample

Observations

®* The benchmark suite is single threaded

® Aggregate single core performance for Phi vs. a typical Intel
Core/Xeon is lower, this result is generally expected, but...

® Some individual models >2x slower

®* This appears at least in part due to how the QuantLib
benchmark suite Is structured

® Significant amount of scalar set-up code inside deeply
nested loops

'S Full of Cores...

It

%]

3.9%]

%]

RN

@ =
@

FITTTEEET 2
RRRRRRRRRE

o
@

159

83.5%]

FECERRRPRRPRRREEEE R Errrr
[EPRRREEEEPPEPPERE PR EEEEErrrTiae

0.06%]

@

169
170

1

11.9%]

[EEEEEEEEETEE PR EEEEErI9s-

173

FEEEEEEEREE P EEERREEEE T T EERRELrr]193-3%]

174
175
176
177

2.7%]

1

3.1%]
7.4%]

FEREEREEEREREERREEEEEEEEEEEEErrrTiae

6%]

oM WO~

@
@

AR

37.96/116G]

FECPPPEEEEEEEEEEEPEEE e ny i i
AR

BK/64.0G]

1 day, 10:57:00

(5]
-
>
3
By
]
=
C
]
u
al
u
el
-~
=1
E
=
~
L)
E
1=
o
al
o
E
=
e
[r]
=]
u
=
=
o
-
[
=
o
~
x
3
&
-
=
~
)
2]
L
@
©
=]
@@
(]

|
w
]
-
e
@
[
o
=
pua |

|
=
=
]

|
w
e
7]
]
]
(=3
E
1=
o
~
-
o
=]
=
A
~
+
al
=]
-
(=]
@
(=]
(]
@
L
@

8976 R 106.

The challenge Is using them.

2323323323332332332333

6.081
R RN RN RN RN R RN R R AR AR AN AR R |

0.08]
1

68 [A

MemLILITITTIINTTIT 2.726/11861 Tasks: 144, 391 thr; 2 running

supl 9/64.06] Load average: 1.65 36.78 45.62
Uptime: 7 days, 13:51:12

thomas 8 1274 10848
8 28268 7696
8 1994 16988
8 76800 26788
]
]

htop
tmux new —s dev-ph;
3.69 /usr/lib/systend/systend —switched-root —system —deserialize 21
8:38.45 /usr/Lib/systend/systend-journald
0:09.82 /usr/sbin/lymetad —f
8:61.99 /usr/Lib/systend/systend-udevd
/sbinfauditd

1984 8288
49292

55452 668

55452 608

84588 728

84588 872 728

98 716

5616 4172

4172

4172

3144

3144

ET

1432

1432

1432

976

15856

15856

15856

[l

3984

768

768

760

0:62.84 /usr/shin/sedispatch
Jusr/sbin/ModesManager
Jusr/sbin/HodesManager

Jusr/Uibexec/accounts-daemon
/usr/Uibexec/accounts—daemon

/bin/dous—daenon —systen —address=systend: —nofork —nopidfile —systesd-activation
—system —nofork —nopidfile —systend-activation
avahi-daemon: running [wsl-iit-knlel. lacall
Jusr/sbin/irgbalance —foregroun
Jusr/sbin/rsyslogd -n
/usr/sbin/rsyslogd —r
d -n
ot helper
/usr/sbin/abrtd —d -5
Jusr/sbin/gssproxy -D
Jusr/sbin/gssproxy -
Jusr/sbin/gssproxy -
.88 Jusr/sbin/gssproxy -
.88 /usr/sbin/gssproxy -D
93 /usr/sbin/gssproxy -0
.71 Jusr/Uibexec/rtkit-daenon
.38 /usr/Libexec/rtkit-daenon
111 Jusr/Libexec/rtkit-daenon
82.15 /usr/Lib/polkit-1/polkitd —no-debug
20.76 /usr/Lib/polkit-1/polkitd —no-debug
8:99.81 /usr/Lib/polkit-1/polkitd —no-debug
8:61.26 /usr/Lib/polkit-1/polkitd —no-debug
8:61.12 fusr/Lib/polkit-1/polkitd —no-debug
1:22,72 fusr/ib/polkit-1/polkitd —no-debug

rg —xD
6:64.38 /usr/bin/abrt-watch-log ~F BUG: WARNING: at WARNING: CPU: INFO: possible recursive locking detected ernel BUG at list_del corruption List_add corruption do_IRQ: stack overflow: ear stack overflow (cur: eneral protection fault nable to handle kernel ouble fault: RTNL: assertion failed eek! page_mapcount(page) went negative! adness at NETDEV WATCHDOG ysctl table check failed : nobody cared IRQ handler type mism
:47.31 fusr/Lib/systend/systend-logind
:09.91 /usr/sbin/smartd —n —q never

Scaling up

® Parallelization

® 72 physical scalar cores

® High bandwidth on-chip mesh

®* High bandwidth CPU adjacent memory (MCDRAM)
® Vectorization

® Up to 16 double or 32 single precision floating point operations
per vector unit, per clock

® Two vector units per physical core

Intel Compiler Collection
Auto Parallelization

® Using #pragma directives to guide code generation

®* Can parallelize candidate loops with either OpenMP or
TBB

®* OpenMP for homogenous workloads

* TBB for variable workloads

Auto parallelization Is not
always a win

W 2.8Ghz Core i7/Clang L ENLGEO B KMLACT KNLACC
[~xMIC-AVXE1) W -xPIC-ANET 2

What's going on here?

® Initial guess is that there’s not enough work per thread to
offset the communication overhead

Intel Compiler Collection

®* Compiler vectorization reports
® -gopt-report, -qopt-report-phase
® Vectorization Advisor

® Extensive tools for analyzing and recommending vectorization
opportunities

® Not explicitly tied to code generated by the Intel Compiler

®* VTune profiler

®* Sample based and “uncore” counter profiling

What's going on here?

®* VTune Says -
® ~21 of 272 logical cores utilized, ~7.8% utilization
®* ~57% time spent in serial code
®* ~50% scalar/50% SIMD instruction mix
® Significant fraction of parallel time Is load-imbalanced

® 83% of pipeline slots remain empty

What's going on here?

®* Top 3 serial hotspots -

®* QuantLib::TrinomialTree:: TrinomialTree

®* QuantLib::TreeLattice<QuantLib::OneFactorModel::Sho
rtRateTree>:.computeStatePrices

®* malloc

QuantLib I1s a non-trivial
codebase

® Approximately 2280 source files, ~300k lines of code
®* Makes heavy use of allocations, and shared pointers
® Difficult to optimize without significant restructuring

® Detailed optimization of QuantLib Is outside the scope of
the work for this project

Narrowing the scope

® Currently evaluating optimization of
®* Heston model
®* SVD model w/parallel RNG
® Stripped down implementations, not part of QuantLib

® Explicit use of Intel’'s Math Kernel Libraries where
appropriate

Early results
Scaling individual models

®* Heston Model

®* Peak core utilization ~149%,

® 75% scalar to 25% SIMD instruction mix
®* SVD & Parallel RNG

® Peak core utilization ~19%

® 100% Packed SIMD instruction mix

Next steps

®* Long term goal is not focused on individual model
optimization

®* Enable Quants to describe compute intensive problems
In terms of high level composition of numerical
algorithms

® Focus evaluation on scaling up compute utilization via
explicitly parallel work partitioning

Next steps (cont)

Custom C++ Allocators

® Using C++ vector types backed by MCDRAM for
frequently accessed data

® Align vector types on cache-line boundary
Non-Temporal Store

® Avoid perturbing cache with data that is only ever
written (e.g. result sets)

