-_
‘/,

Shining a Light on Full FPGA and ASIC Performance

Adam Sherer, Account Technical Executive, Cadence Design Systems
STAC Fall 2022

cadence

Agenda

Performance in low-latency trading systems

Simulation-based performance analysis

Using assertions for performance analysis

System level performance analysis

Call to action

cadence

Shining a Light on Full FPGA and ASIC Performance

 FPGA and ASIC HFT accelerators are architected Network
and coded for functionality and performance | I l

It works!!! ... but not fast enough in all conditions | T NetworkStack

* Performance anomalies often found in lab or live | I

- Occur due to corner cases and/or system saturation | Nem°':;‘::;ihr&nme
- Visibility inside FGPAs is limited for debug | |
- For ASIC, analysis must be done pre-silicon

FAST
g . : T : Encoder Decoder
 Verification shines for visibility and analysis
- Block — order of algorithms and data paths Custom _ Order
Book

- Interfaces — data transport efficiency App

- Full system — memory and on chip bus latency |
Source: “The Architecture of HFT System”, Tej

asvi Shiyv,

June 7, 2021, FPGAs for Stock Market Trading:
https://medium.com/fpgas-for-stock-market-trading/

the-architecture-of-hft-system-713e64604a61

cadence

Designing Hardware Blocks for Performance

« Know the order of your algorithms in hardware
- Individual blocks may run fast enough but become bottlenecks when system scales

« Maximize combinatorial logic

Unroll loops to reduce clocks for computation

Pre-calculate invariants to reduce computation in loops and/or data path
Create testbench monitors to observe combinatorial performance

- Add clocking domains to reduce clock skew issues

O

O

O

« Perform all price and time processing in fixed point (integer) notation
(assumed to be common practice today)
- Utilize incremental vs full value calculations to reduce computational area

cadence

Analyze Regression for Performance Issues and Opportunities

Modules
(blocks)

Streams
(ex. always stmts)

Most Active Modules (behayigsai Total time per module at line in file

%hits #hits #insi name
6.8 96670 [16049] worklib.dsp_delay:v (file: /tmp/myproject/dsp/rtl/dsp_delay.v line: 29)
3.9 55715 [703] worklib.gen_mux_ohot:v (file: /ftmp/myproject/gen/rtl/gen_mux_ohot.v line: 30)
3.4 49232 [1163] worklib.inv_tim_adj:sv (file: /tmp/myproject/bench/models/inv_tim_adj.sv line: 5)
3.3 47636 [16952] worklib.dsp_convert:v (file: /tmp/myproject/dsp/rtl/dsp_convert.v line: 56)
3.3 47408 [3704] worklib.dsp_add:v (file: /ftmp/myproject/dsp/rtl/dsp_add.v line: 64)
1.9 27181 [1680] worklib.gen_counter_ripple_v2:v (file: /tmp/myproject/gen/rtl/gen_counter_ripple_v]

Stream Counts (1428894 hits atal) Total hits per always at line in file

%hits #hits #inst name
4.0 57416 [16049] Always stmt (file: /tmp/myproject/dsp/rtl/dsp_delay.y, line: 65 in worklib.dsp_delay [module
3.8 53586 [703] Continuous Assignment (file: /tmp/myproject/gen/rtl/gen_mux_ohot.y, line: 53 in worklib.ger
2.0 29182 [16952] Always stmt (file: /tmp/myproject/dsp/rtl/dsp_convert.y, line: 326 in worklib.dsp_convert [n
1.9 27688 [16049] Continuous Assignment (file: /tmp/myproject/dsp/rtl/dsp_delay.y, line: 76 in worklib.dsp_de

1.8 25784 [3704] Continuous Assignment (file: /tmp/myproject/dsp/rtl/dsp_add.v, line: 184 in worklib.dsp_adq

« Performance issues may only manifest in regression

* Most active code (hit rate) may be different for different tests

« Target most active code to optimize performance

Merged

Profiles

Profiles for each
regression test

7~

cadence

Digger Deeper with Single Run Profiling

 Rerun tests for instance-
level performance details

 Determine if issue is in all
or individual instances

* Modify code, reprofile,
rerun regression

Examine instances vs. modules

Examine contributing subblocks

= Open - | @/Default view - | & Goto - | - - Mavi/jation History

Code blcks
{* Instances " Types ¢ Categories - [|Recursive Disilay: Al ~ @ - | callers o -
Name Self Curmnul: Name All Self+ Block Kind Caller # #
Grade (na fitdr) Im] Assertions (na fitter) (na fitter) Sampled Calls Sampleg
= % Instances 0.0% 69_9% ~ { } otk y I (no filtter) (no filker) (o filker
= %y HOL Blocks -55% JL Functio
=] iIF apl-l_suhs... 2.6% 49.3% [} block_3 k 4} rollaranhs P [1224% Blocks ﬁ
B dFLapb_.. 24% 46.6% [@} block 18 [Mame: Initial stmt_ fro=o% [_10.23% Blocks
&N Low 19% [block_23 C—Jo009% [—J009% Blocks Callees <=
RRREE 9.5% 1] {5} block_2 [o.02% — s e Blocks el = o
P] = Sampled Calls Sample
! | Il | [} {Q‘} e, Bk (BREE] 0.01% Blocks (no fitter) (no fitter) (o filke
x|~ |G 2 Task run test [T 40.55% 5036 |-
Code Blocks Herarchy Properties
[] Recursive & - &8 - Source
Narme Self Cumulati | [Mame Self Self+ ,fe}q...Iapb_subsystem_top.st] o -
Grade Initial stmt 0.0% [T 40.55% 317 end [a
(no fiter] (no fitker] Il (no fiter) 8 en —
fI:i_apb_subsyst.. 24% 46.6% 319always #5 th_hclk = ~tb_hcl
1% ahbi_mo0 0.1% 0.1% 320

FY
-

® |Q |Name v|~ vl 1 4k

321 initial begin

322 uvm_config_db#({virtual ua
323 uvm_config_db#(virtual ua
324 uvm_config_db#(virtual ua
325 uvm_config_db#(virtual ua

Enm D
- |

L« [[n]

cadence

Add Assertions to Monitor and Prove Performance

- Shine the light on critical paths that must
complete within a max clock count
- Critical datapaths
- Resource request/grant combinations rising edge of “ack™ must occur between
- Asynchronous requests delay critical path M-and N clocks after risking edge of “req

I Srose(req) |=> ## [M:N] Srose(ack)

« Shine the light on streaming invariants

. Best done with advanced lint checkin
- Resource must never livelock/deadlock J

- Simulation is good, formal is better
- Simulation depends on stimulus for all cases
- Formal proves all cases without stimulus

cadence

Examine Data Transport Efficiency Between System Layers

Layering system distributes tasks to multiple designers

Interfaces assure clear communication among teams

Inefficiency can occur if sequential layers recreate intermediate calculations

Refactor interfaces if intermediate calculations are shared

cadence

Memory Subsystem Performance Challenges
Degradation Causes

System
» Inefficient ID reuse - resulting ID collision
» Traffic causes read-modify-write memory access
« Load balancing
* Quality of Service (QoS)
_+ Cacheable and Bufferable transaction attributes (posted / non-posted traffic)

Acceptance FIFO depth i = A(D?B EB : Issuing FIFO depth
@ A 7 Y
1 H)
. Q@ - Y Command queue size

Port arbitration (>1 Port) ! | DDRC DDRC ‘

o)
‘ = |
/////:'f/ 1 1 \ Write response buffer sizing
L2 : : .
Command placement and selection ; g |
’ @ v v i Clock relationships
i = DDR DDR :
Address mapping : i il]
Translation from l """""""" v T Memory technology
System to CS, RBC DR DR — ‘
I

cadence

Interconnect Performance Challenges
Degradation Causes

QoS scheme

Clock Frequency

{

| ADB |

| 1Ims |

Acceptance Capability

——ry

V]

| Issuing Capability \
[I

System Interconnect

S
A 4

[AbE
Y

[
JT .
| | E\‘.i
4 A 4

Interconnect

PLLs

[rus |
[Festo |

Test Mux

cadence

System Performance Analysis Approach (1 of 3)

emory DDR utilization

« With page hit/miss indication

* Max utilization line indicates
the system potential for the
current clock frequency

 Table of DDR commands list
all commands in the current
time window

cadence

Sytam Serteseance araepier

Overview
Memary
Address Distribution
Per Banks Distribution
Bandwidth Utilization
Activate and Refresh
Write to Mask Write
On Chip Bus
Over Time
Latency

Session Report

Runs Selection

Ddr_efficiency_rwra

Bandwidth Utilization

DDR Bandwidth Utilization Over Time

Min: 0% Max: 48.1%

150

Percentage
H

Transactions

On Chip Bus

Start Time

23710
23710
23710
23710

16765390

16767760

Entries per Page

Page Information

Transactions

Instance Name

iwb_ddrc.i_ifc_i ddrc_axil_mon

iveb_ddre.i_ifc_i_ddrc_axi2_mon

iwb_ddrc.i_ifc_i ddrc_axi2_mon

iveb_ddrc.iif

ddre_axi1_mon
iwib_ddrc.i_ifc_i_ddrc_axi1_mon

iveb_ddr

ddre_axi2_mon

Command

Read
Read
Write
Write
Read

Read

Address

1b47d7d0
£510ea30
43047450
€564c0
5640

4a1a3560

125k

Burst

INCR
INCR
INCR
INCR
INCR

INCR

15K

Length

IS

IS

IS

IS

IS

IS

* * * *

L
fﬂ\ ot

o . veb, * ot L° G seEy
. N S N , . .o 4
~ ° * /\’ P e N . Al
ANV aVAY ~ =N
y - SR —~ A
N/ Vo N~— \/ Nee
7.5k 20k 22.5k 25k 27.5k 30k 325k 35k 37.5k A0k 425k 45k 47.5k 50k 52.5k 55K 57.5k 60k 62.5k

Aggregated Bandwidth Utiization

Transfer Size

TWO_WORDS
TWO_WORDS
TWO_WORDS
TWO_WORDS
TWO_WORDS

TWO_WORDS

* *
. * ¥ - *
i "" * L ". * &
*
*

X AR
NSYAaYA % ~/ 7\ M

20k 22.5k 25k 27.5k 30k 325k

Time [ns] - Sampling Interval is

Aggregated Bandwidth Utilization + Aggregated Percentage of Page Hit/Miss

‘Time [ns] - Sampling Interval is 500 ns

+ Aggregated Percentage of Page HIUMIss — Max Bandwidth Utilization using current k.

A~ v eEl DDR Transactions A viuE
Total Size (bytes) TagID Latency (ns) startTime Instance Name Command spacing (in Clocks) ~ Bank Row Column BL e

32 1f 16985.79 2805 memcd_test.memery_1.comp_OChannela) ClockFreguencyChange

32 47 16997.64 2805 memcd_test memary_0.comp_0{Channela) ClockFrequencyChange

32 1686255 14435475 memcd_testmemery_0.comp_0(Channela) MRW2 1297

32 4a 1703556 14439255 memcd_test memary_1.comp_0{Channela) MRW2 [

32 3f 30573 14458155 memcd_test.memery_0.comp_O(Channela) MRW2 30

32 67 2844 14461935 memcd_test memary_1.comp_0{Channel) MRW2 [

1-100f2000 Next¥

Entries per Page 1-100f3748 Nextd

cadence

System Performance Analysis Approach (2 of 3)
On chip bus over time analysis

. ad e e iy s =
» Quickly understand the R e —)
ala o

relationship between: " o
- Bandwidth over time

- Latency over time

|
) i h e e L gt ,,r] N " i Wy % ol . " -
Wit 1 Mak ‘ e Pl 2k ik bL Ak k. ER 1 10 L i i L.13 43k S 52k Sk
Time [ng] - Samglng b s 50 ne
- - On Chip Bus ~
- Outstanding transaction over S S
time)
Seenonican Repart H
%-‘x.
L . f
44l Sk

* Allows bottlenecks to be ° e A e
identified and investigated L] Latency Over Time

IIIIIIII

cadence’

12 © 2022 Cadence Design Systems, Inc. All rights reserved.

System Performance Analysis Approach (3 of 3)

On chip bus latency analysis

* Quickly identify outlier
transactions with high
latency and investigate the
time period when they occur

* In all three analysis
examples UVM or similar
testbench messaging and/or
assertions/checkers should
be used to identify
suspicious tests for analysis

cadence

MMMMM

Read & Write Latency Distribution

LounL

Correlate latency outliers
for further analysis

cadence

Cadence: Your ASIC/FPGA Partner

Cadence Verification Full Flow

Digital Design to y— =
Verification solution: Apply Implementation - 4
objective analysis to improve o o O O U4
FPGA and prepare for ASIC Rich Content oy | ‘

Portfolio Verification IP — SystemVIP - Perspec

Fast Scalable Protium

Engines : ﬁ : ﬁ | | | | T m
i

HeterogSnSEE Arm®/X86 CPU Arm/X86 CPU
Compute

ASIC solution: Broadly Physical RTL
adopted in high-speed Synthesis
comms and mission-critical
applications

Cloud Enabled

. Place and
Tensilica® IP: Proven

processor technology used
in autonomous drive and
other high-reliability apps

Cadence IP Solutions
Silicon-proven in advanced nodes

DDR HBM SD, SDIO NAND
LPDDR GDDR6 eMMC ONFI, Toggle

Liberate™

Tempus™

™ Software Tensilica® Application Optimal
. . VOltus i i AFE i
High-performance IP: Proven ORImIEED SONMIGURUOn
i ' Pegasus™ : Embedded DSP _ .
in leading comms systems g — PN coeston Rapid

optimized integration

Quantus™

Services: Expert RTL to GDS .
design services

usB

Vision, imaging Monitors

Custom

Audio, voice, speech
Logic

Memory M\ Do, POR

PLL/OSC

MIPI® Customer-optimized

DP Systems
- eDP peripherals

Cadence extensive Design IP, Verification IP (VIP), Tensilica® IP,

Changeable

l

0

and memory models to ensure complex SoC designs correctly on first pass

cadence

Call to Action: Shine A Strong Light on Performance

- Data, data, data!
- Performance analysis requires simulation cycles to generate data...
- ... except where formal analysis can be applied

 Profile, profile, profile!
- Functionality and performance go together for HFT
- Functionality without performance can be a competitive disadvantage
- Performance without functionality can be an even higher risk!

« Start simple and build up
- Add assertions — these will help debug as you rerun suspected lab sequences in simulation
- Make profiling a design review task — ask designers to comment on performance analysis
- Build to formal methods and system performance analysis = especially for ASIC!

cadence

cadence

https://www.cadence.com/go/trademarks

