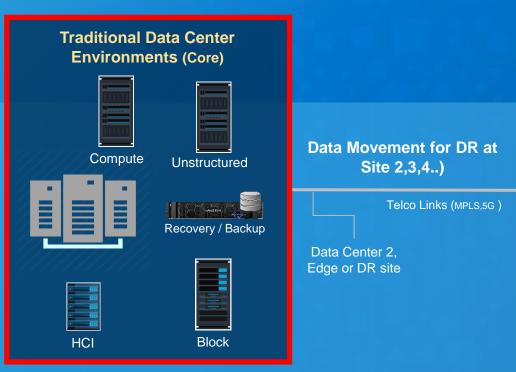


Speed and revenue generation depend on effortless, worry-free handoffs to the machine... Sounds Easy Enough.. BUT!

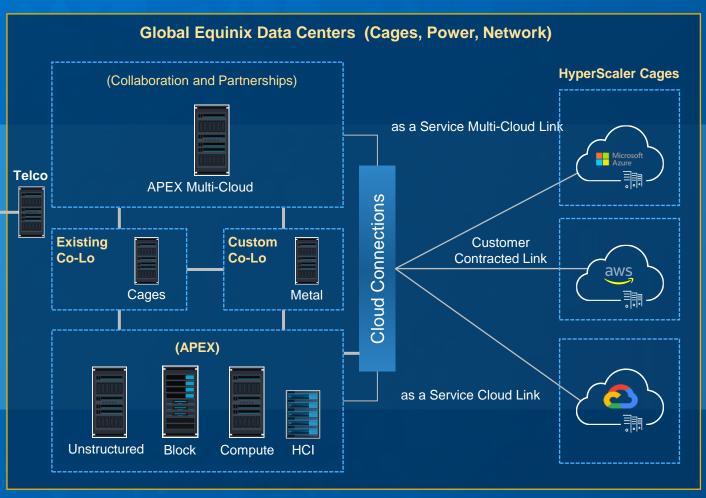
Gravity is Real!!

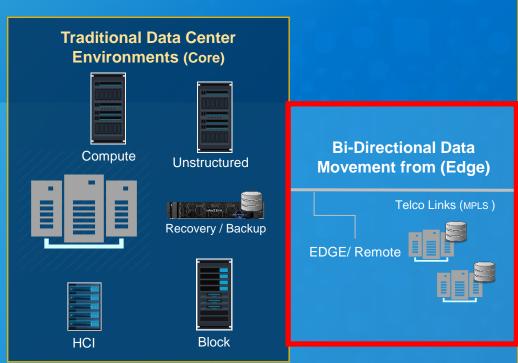
We Want To React! What's the cost of opportunity?

We Need To Learn!! What's the cost?

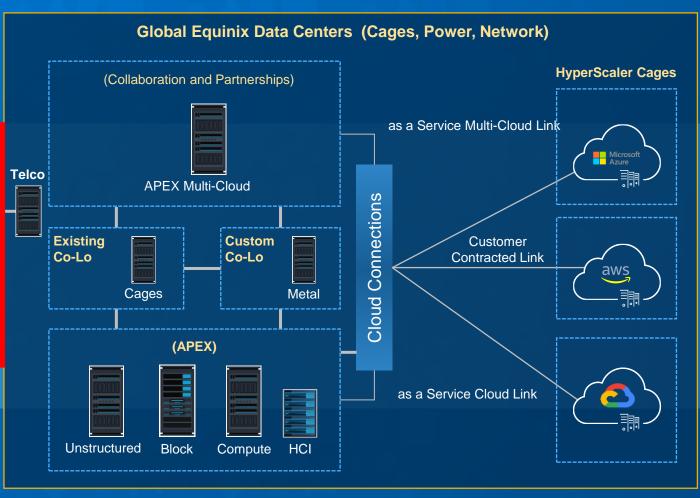


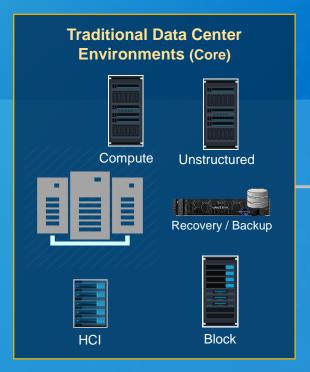
Still your Call, But....!!


Adjacency to Stream, Compute & Code Storage, Network

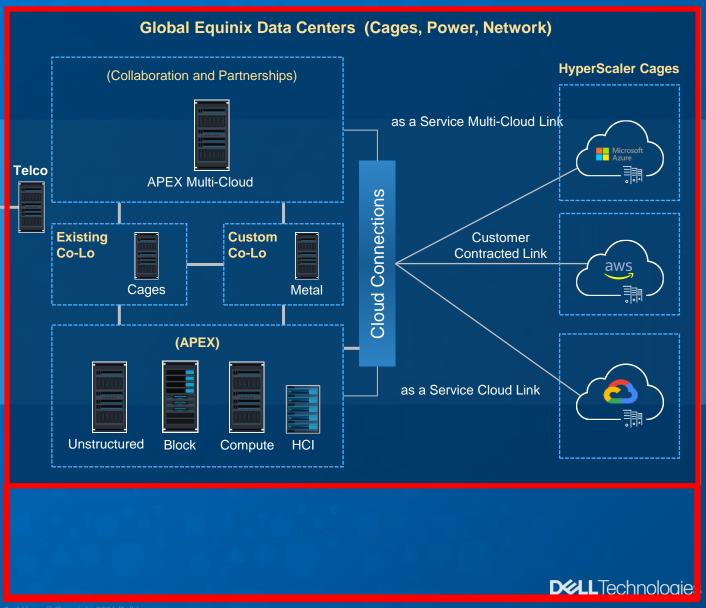

- HCI / ASICs/ GPU/FPGAs
- Containers
- Infrastructure as code
- Bare Metal
- Object vs File
- More Data Gravity
- Scaling
- Life cycle management
- Security
- Cost
- Complexity
- New Tools
 - Where do you want to run your work!

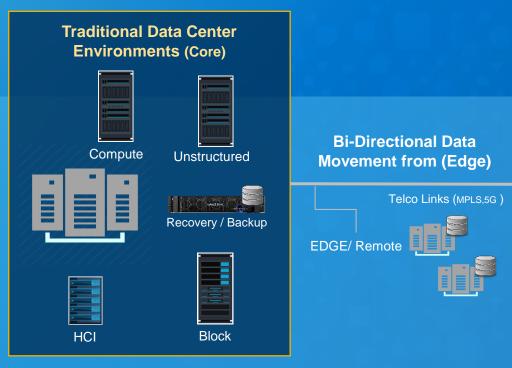
D¢LLTechnologies



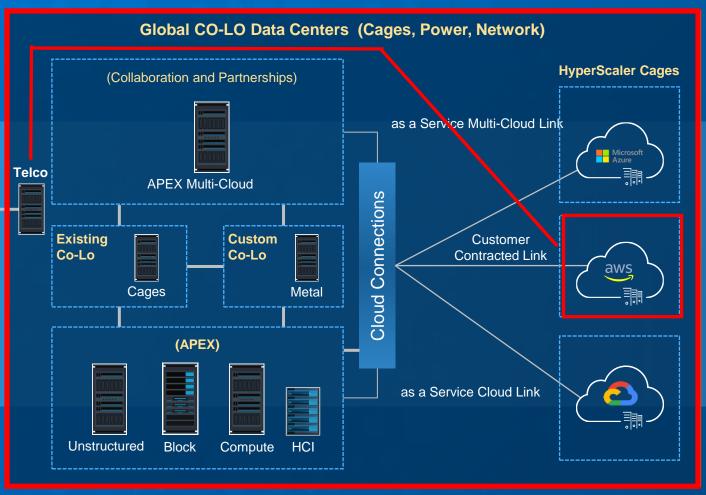

- Cluster Provisioning tools
- Smart Connect
- FIPS / SEC 17a / Worm
- · Next Gen Access: RAN / CSI / API / S3 / V-Connect
- GPU direct and RDMA over NFS
- Certified HDFS qualification with Cloudera
- Advanced Security tools: Ransomware Defender, Easy Auditor & advanced Air Gap tools

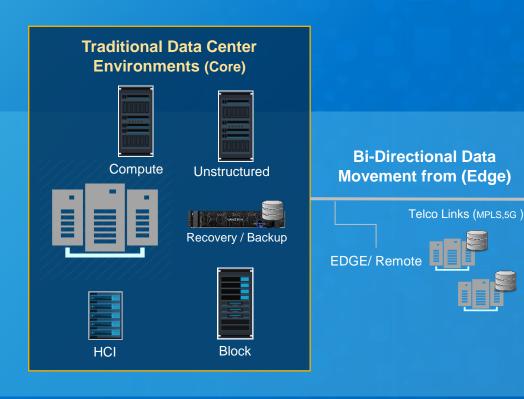
- Cluster Provisioning tools
- Next Gen Access: RAN / CSI / API / S3
- GPU direct and RDMA over NFS
- · Certified HDFS qualification with Cloudera
- Advanced Security tools: Ransomware Defender, Easy Auditor & Air Gap
- Networking strategies
- · Replication interface optimization


Bi-Directional Data Movement from (Edge)


Telco Links (MPLS,5G)

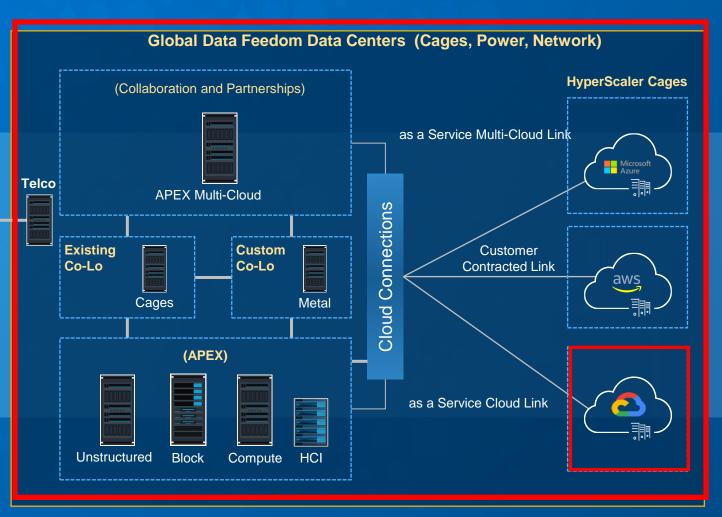
Bringing the Compute and Tools to the Data


- · Tiering within a single namespace
- Next Gen Access: RAN / CSI / API / S3
- GPU direct and RDMA over NFS
- · Certified HDFS qualification with Cloudera
- Advanced Security tools: Ransomware Defender, Easy Auditor & Air Gap
- Networking strategies
- · Replication interface optimization



Bringing the Compute and Tools to the Data Riding your pipe

- · Tiering within a single namespace
- Next Gen Access: RAN / CSI / API / S3
- GPU direct and RDMA over NFS
- · Certified HDFS qualification with Cloudera
- Advanced Security tools: Ransomware Defender, Easy Auditor & Air Gap
- Networking strategies
- · Replication interface optimization



PowerScale for Google Cloud

- A cloud native storage offer which connects to the hybrid cloud portfolio and strategy
- Scale-out file storage performance and enterprise-class features
- Provisioning, configuration and management in Google Console
- · Single bill and support from Google
- Predictable pricing and guaranteed performance
- Complete lifecycle management with SLAs from Dell Technologies

Challenges customers are facing

of company data goes unused for analytics and decision-making

of remaining 27%
data set is poor
quality data due to
unclassified,
unusable, legacy/old

of data
warehouses/lakes
are siloed and
disconnected
across public /
private clouds

Infrastructure complexities

EVOLVING BUSINESS EXPECTATIONS

- Must meet rising customer expectations
- √ Varying sets of objectives
- ✓ Consume data in real time
- Use of AI & ML for decision making

People challenges

of data management resources' time is spent on data innovation and monetization

Data challenges & complexities

80%

of data created is unstructured and in decentralized locations. By 2025, 75% of data will be created at the edge

DYLL recnnologies

Why is Data Transformation important?

Large amounts of raw data

Create actionable insights

Identify strategic use cases

Government

Leading to business value creation

At the speed of opportunity

Customer Analytics

Drive Revenue

New revenue opportunities*

- **Product Development**
- **Business Decision Making** / Recommendations
- Customer Experience
 - Personalized Healthcare
 - **Exploration & Discovery**
 - **Billing Optimization**
 - Channel / mix optimization
 - Pricing optimization

Operational Analytics

Reduce costs

Realized cost savings*

- Predictive maintenance
- Operations optimization
- Supply chain optimization
- Manufacturing operations
 - Asset performance
 - Process engineering
 - Capacity planning
 - Retail store operations

Risk Analytics

Avoid risks

Increased profitability*

- Cyber security
- Compliance / Audit
- Fraud detection
- Safety & Reliability
- Anti-money laundering
- Rogue trading
- Service Reliability / Resilience

Today's Challenges

10 years ago

Market Data is in Gigs Daily

and put in memory for algorithms

Jobs isolated to Quant machines handful of jobs

5 years ago

Market Data is in

500+ Gigs Daily

Architectures for algorithms deviate (central vs node based)

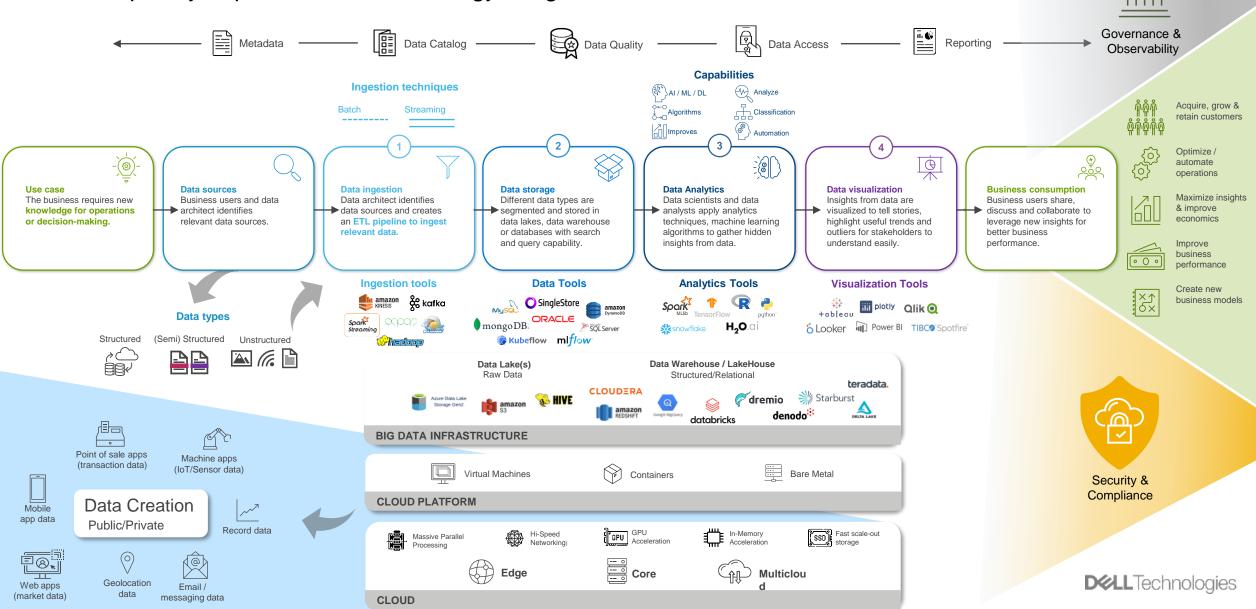
Thousands of jobs on various compute boxes

Today

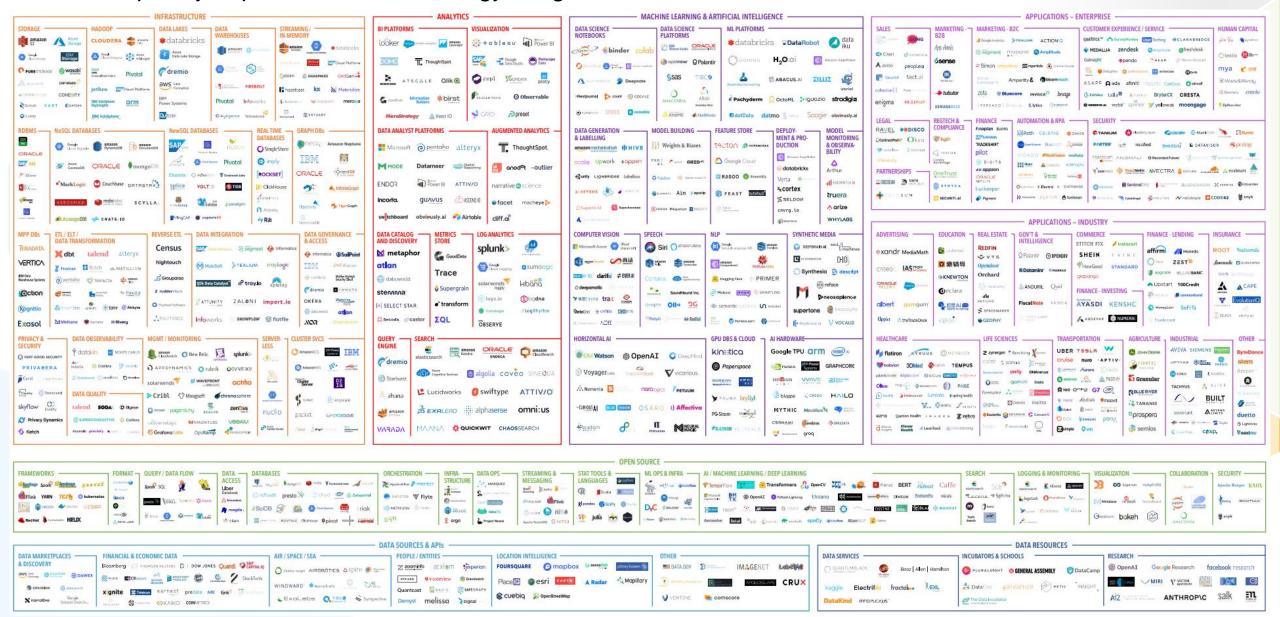
Market Data is in

5 to 25 TB Daily

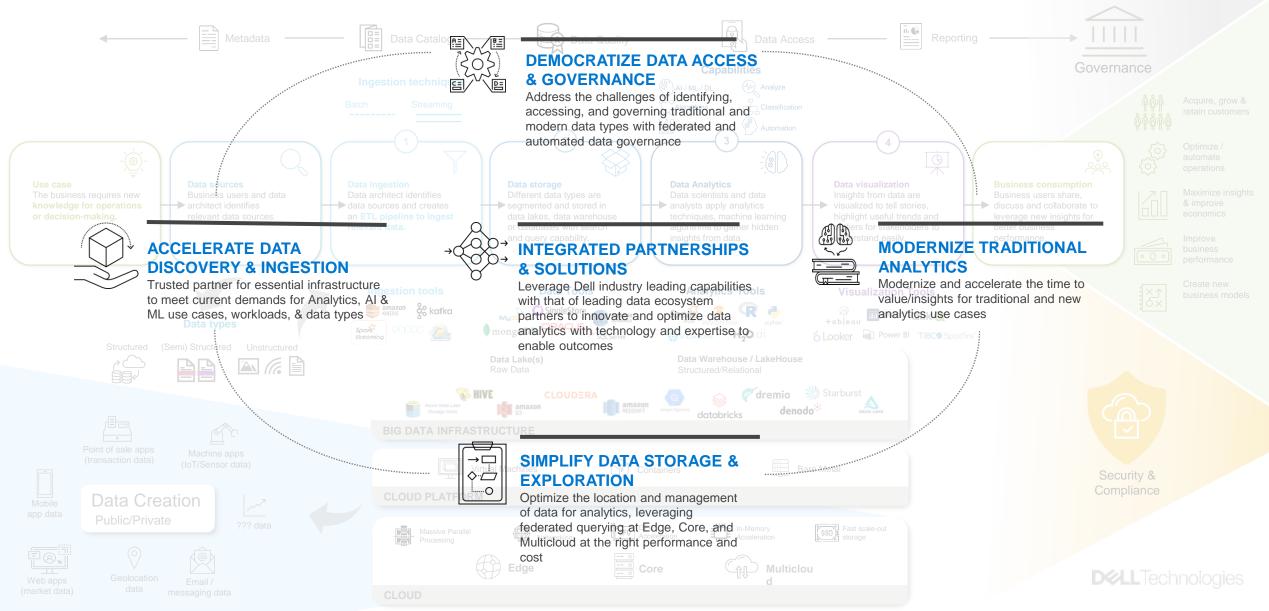
Architectures for algorithms differ (central vs node based)


Hundreds of thousands to millions of jobs

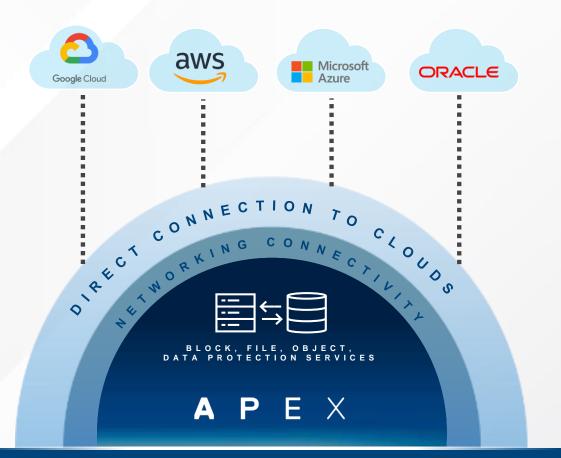
Dell's Point Of View


Data Lifecycle Ecosystem

The complexity of process and technology integration


Data Management & Analytics Ecosystem

The complexity of process and technology integration


Data Management Vision

Strategic collaboration & integration for best of breed data lifecycle

Apex Multi-Cloud Data Service & Data Analytics

Use the cloud you want, when you want

Multi-cloud agility with simultaneous public cloud access

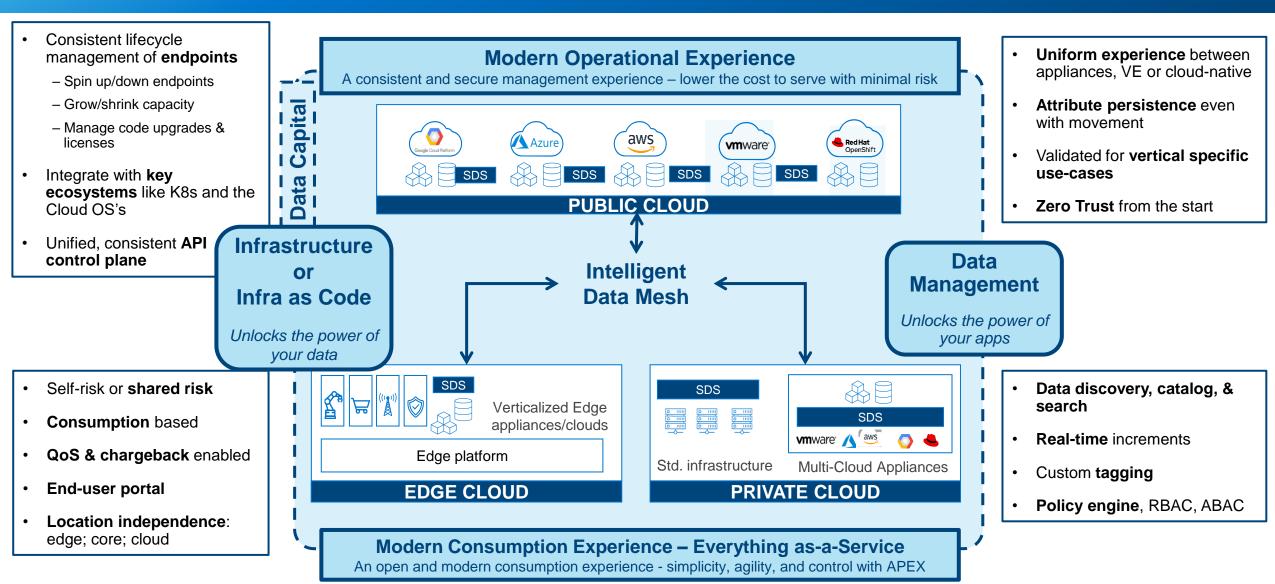
Fully managed service available through a single console

No vendor lock-in with data independent of public cloud

Meet regulatory and compliance requirements when your data moves off-premises

No excessive egress fees

Enable Data Analytics at the Edge and Core


New Object Services and multi-factor authentication, available in US, UK, Germany and Australia

Maximize Your Data Capital on Your Terms

Move data across clouds with SmartSync – at the right place with the right SLAs

REPLICATE

Low RPO async copies for disaster recovery

Replication now; failover/DR in 2023

COPY

On-demand copy to file or object for burst, test/dev or analytics

Full copy now; incremental in 2023

BACKUP

Scheduled copies of snaps to cloud for backup

Scheduled backups in 2023

TIER

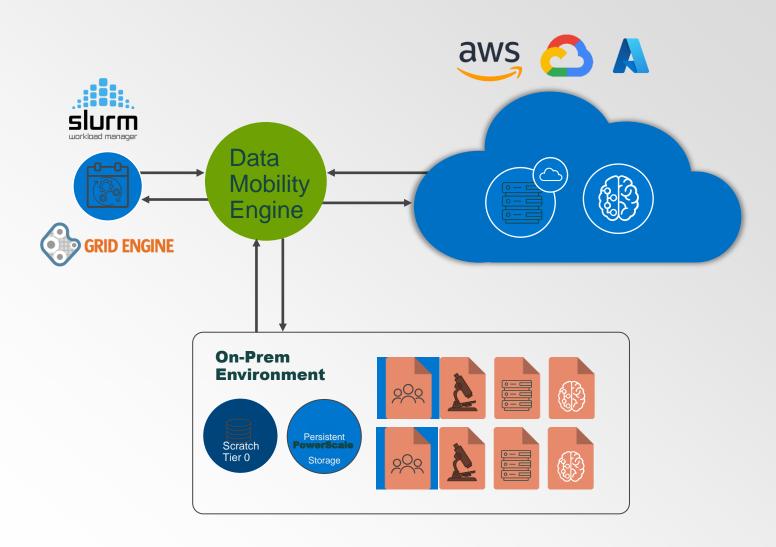
Transparently archive data with option to recall

CloudPools now; replace in 2H 2023

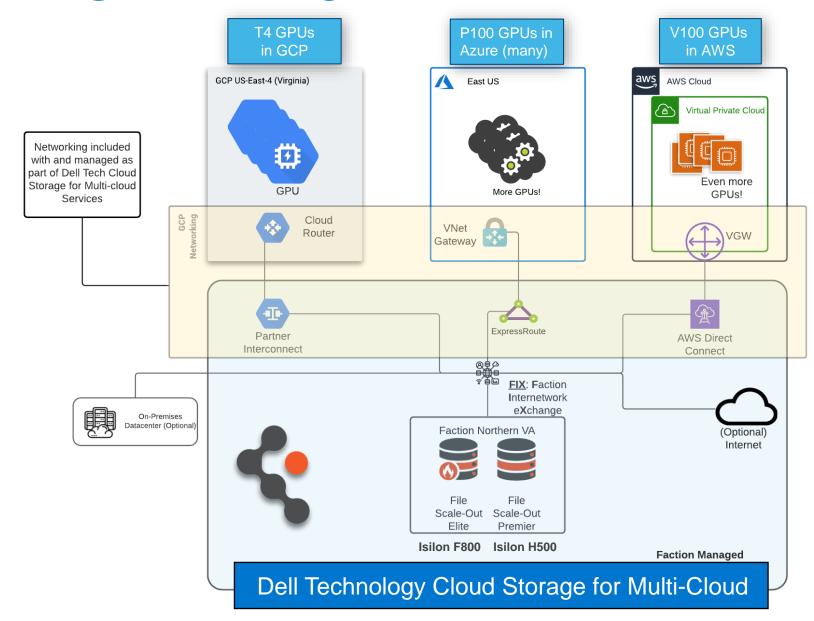
ARCHIVE

Archive data and free up storage space

Delete from source in 2023

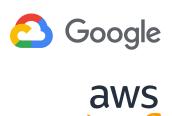

Data copied, tiered or archived to cloud will be directly accessible in cloud

Cloud Bursting


Quickly Serve Relevant Data to Compute Instances in the Cloud Collaboration

Key Features

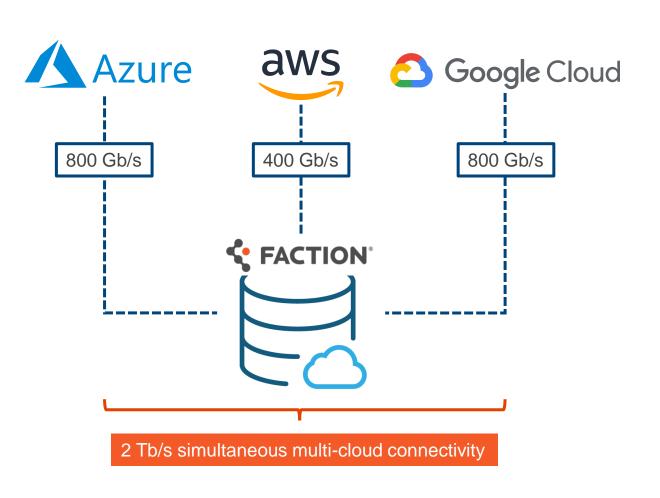
- Automatically transfers from on-prem storage into the cloud
- No limit on the number of compute instances
- Minimizes data transfer costs with intelligent caching
- No manual data movement
- Provides each cloud compute instance with an easy access protocol
- Adheres to on-prem ACLs and security
- Only retrieve required data to reduce egress costs


TEST ENVIRONMENT

- Single Isilon-/PowerScale-powered Dell Tech Cloud Storage for Multi-Cloud data lake
- Connectivity to each cloud (included in service offering)
- Univa Grid Engine powered job execution engine (set up by Faction)
- Resources across GCP, AWS, Azure in Northern Virginia regions

THIS ISN'T THEORY

root@uge-master-new:										
HOSTNAME	ARCH	NCPU	NSOC	NCOR	NTHR	NLOAD	MEMTOT	MEMUSE	SWAPT0	SWAPUS
المادا	_					_				
az-p100-w000004	lx-amd64	24	2		24	0.79	440.9G	45.0G	0.0	0.6
az-p100-w000005	1x-amd64	24	2	24	24	1.64	440.9G	44.4G	0.0	0.6
az-p100-w00000B	lx-amd64	24	2	24	24	1.89	440.9G	138.9G	0.0	0.6
az-p100-w00000E	1x-amd64	24	2	24	24	1.86	440.9G	271.2G	0.0	0.0
z-p100-w00000F	1x-amd64	24	2	24	24	2.04	440.9G	67.1G	0.0	0.0
az-p100-w00000G	1x-amd64	24	2	24	24	0.98	440.9G	48.0G	0.0	0.0
az-p100-w00000H	1x-amd64	24	2	24	24	1.67	440.9G	43.5G	0.0	0.0
z-p100-w00000J	1x-amd64	24	2	24	24	1.83	440.9G	47.7G	0.0	0.0
z-p100-w00000K	lx-amd64	24	2	24	24	1.48	440.9G	53.7G	0.0	0.0
az-p100-w00000L	lx-amd64	24	2	24	24	1.28	440.9G	26.1G	0.0	0.0
az-p100-w00000M	lx-amd64	24	2	24	24	0.64	440.9G	36.7G	0.0	0.0
az-p100-w00000N	lx-amd64	24	2	24	24	1.80	440.9G	43.4G	0.0	0.0
az-p100-w000000	1x-amd64	24	2	24	24	2.33	440.9G	189.6G	0.0	0.
z-p100-w00000P	1x-amd64	24	2	24	24	1.29	440.9G	29.3G	0.0	0.
az-p100-w00000Q	lx-amd64	24	2	24	24	0.75	440.9G	236.3G	0.0	0.
az-p100-w00000R	lx-amd64	24	2	24	24	2.19	440.9G	234.0G	0.0	0.
az-p100-w00000T	lx-amd64	24	2	24	24	0.01	440.9G	1.8G	0.0	0.
z-p100-w00000Y	1x-amd64	24	2	24	24	1.61	440.9G	234.0G	0.0	0.
az-p100-w000014	lx-amd64	24	2	24	24	0.01	440.9G	1.8G	0.0	0.
az-p100-w00001A	lx-amd64	24	2	24	24	2.06	440.9G	168.3G	0.0	0.
az-p100-w00001B	lx-amd64	24	2	24	24	1.41	440.9G	227.6G	0.0	0.0
az-p100-w00001Y	lx-amd64	24	2	24	24	1.59	440.9G	184.8G	0.0	0.
z-p100-w00001Z	1x-amd64	24	2	24	24	1.57	440.9G	115.9G	0.0	0.
gcp-pb-workers-2nkl	lx-amd64	32	1	16	32	0.92	204.5G	32.9G	0.0	0.0
gcp-pb-workers-76tv	lx-amd64	32	1		32	1.06	204.5G	41.5G	0.0	0.0
gcp-pb-workers-frqr	lx-amd64	32	1	16	32	1.27	204.5G	46.8G	0.0	0.0
cn-ph-workers-vifl		32	1		32	0.84	204.5G	24.7G	0.0	0.0
1p-172-31-32-118	1x-amd64	32	1		32	0.16	239.9G	29.6G	0.0	0.0
ip-172-31-39-100	1x-amd64	32	1		32	1.37	239.9G	36.6G	0.0	0.0
ip-172-31-44-41	1x-amd64	32	1	16	32	1.40	239.9G	41.0G	0.0	0.0
ip-172-31-45-227	1x-amd64	32	1	16	32	1.15	239.9G	67.0G	0.0	0.0
ip-172-31-66-202	1x-amd64	32	1		32	1.42	239.9G	40.6G	0.0	0.0
uge-master-new	lx-amd64	4	1	4	4	0.00	31.3G	1.3G	0.0	0.0

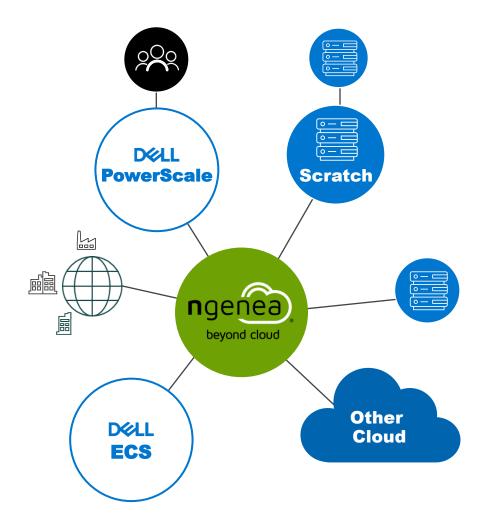

HOSTNAME	ARCH	NCPU	NSOC	NCOR	NTHR	NLOAD	MEMTOT	MEMUSE	SWAPTO	SWAPL
global	-	-				-	-	-	-	
zz-p100-w00000H	1x-amd64	24	2	24	24	1.42	440.9G	94.4G	0.0	0.
z-p100-w00000J	1x-amd64	24	2		24	0.17	440.9G	82.6G	0.0	0
zz-p100-w000000	1x-amd64	24	2	24	24	0.17	440.9G	148.5G	0.0	0
zz-p100-w00000R	1x-amd64	24	2		24	0.33	440.9G	215.6G	0.0	0
zz-p100-w00000Y	1x-amd64	24	2		24	0.34	440.9G	214.3G	0.0	0
z-p100-w00001Y	1x-amd64	24	2	24	24	0.17	440.9G	154.4G	0.0	0
zz-p100-w00001Z	1x-amd64	24	2	24	24	0.17	440.9G	58.0G	0.0	0
gcp-pb-worker-0qqf	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
cp-pb-worker-1znx	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
cp-pb-worker-28rf	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	ø
gcp-pb-worker-775r	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-cxf3	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-hw28	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-k9j4	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-klp4	lx-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-lcrh	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
gcp-pb-worker-n8v1	1x-amd64	32	1	16	32	0.00	204.5G	1.3G	0.0	0
ip-172-31-32-101	1x-amd64	32	1	16	32	0.00	239.9G	976.0M	0.0	0
ip-172-31-33-73	1x-amd64	32	1	16	32	0.00	239.9G	3.0G	0.0	0
ip-172-31-35-243	1x-amd64	32	1	16	32	0.00	239.9G	970.8M	0.0	0
ip-172-31-37-110	1x-amd64	32	1	16	32	0.00	239.9G	2.9G	0.0	0
ip-172-31-38-248	lx-amd64	32	1	16	32	0.00	239.9G	978.6M	0.0	0
ip-172-31-38-50	1x-amd64	32	1	16	32	0.00	239.9G	3.7G	0.0	0
ip-172-31-39-179	1x-amd64	32	1	16	32	0.00	239.9G	968.6M	0.0	0
ip-172-31-43-215	1x-amd64	32	1	16	32	0.00	239.9G	977.1M	0.0	0
ip-172-31-45-24	1x-amd64	32	1		32	0.00	239.9G	968.4M	0.0	0
ip-172-31-47-216	1x-amd64	32	1	16	32	0.00	239.9G	976.5M	0.0	0
ip-172-31-64-125	1x-amd64	32	1	16	32	0.00	239.9G	970.5M	0.0	0
ip-172-31-65-41	1x-amd64	32	1	16	32	0.00	239.9G	3.2G	0.0	0
ip-172-31-66-23	1x-amd64	32	1	16	32	0.00	239.9G	954.0M	0.0	0
ip-172-31-67-65	1x-amd64	32	1	16	32	0.00	239.9G	969.8M	0.0	0
ip-172-31-69-103	1x-amd64	32	1	16	32	0.00	239.9G	970.1M	0.0	0
ip-172-31-72-194	1x-amd64	32	1	16	32	0.00	239.9G	969.8M	0.0	0
				-	-		-			


Peak cluster size > 1 Million **CUDA** cores

	OR THE REAL PROPERTY.	60	-	2010	1000	-				
	- March									
-										
p100-wrkr-scale00000K	lx-amd64	32	1	16	32	0.01	125.8G	902.3M	0.0	0.
p100-wrkr-scale00000L	1x-amd64	32	1	16	32	0.01	125.8G	904.1M	0.0	0.
p100-wrkr-scale00000M	1x-amd64	32	1	16	32	0.01	125.8G	895.8M	0.0	0.
p100-wrkr-scale00000N	1x-amd64	32	1	16	32	0.01	125.8G	905.0M	0.0	0.
p100-wrkr-scale000000	1x-amd64	32	1	16	32	0.01	125.8G	905.4M	0.0	0.
p100-wrkr-scale00000P	1x-amd64	32	1	16	32	0.01	125.8G	899.6M	0.0	0.
p100-wrkr-scale000000	1x-amd64	32	1	16	32	0.01	125.8G	893.5M	0.0	0.
p100-wrkr-scale00000R	1x-amd64	32	1	16	32	0.01	125.8G	892.3M	0.0	0.
p100-wrkr-scale00000S	1x-amd64	32	1	16	32	0.01	125.8G	893.6M	0.0	0.
o100-wrkr-scale00000T	1x-amd64	32	1	16	32	0.01	125.8G	896.1M	0.0	0.
o100-wrkr-scale00000U	1x-amd64	32	1	16	32	0.01	125.8G	897.6M	0.0	0.
100-wrkr-scale00000V	1x-amd64	32	1	16	32	0.01	125.8G	896.5M	0.0	ø.
100-wrkr-scale00000W	1x-amd64	32	1	16	32	0.01	125.8G	892.0M	0.0	0.
o100-wrkr-scale00000X	1x-amd64	32	1	16	32	0.02	125.8G	903.3M	0.0	0.
o100-wrkr-scale00000Y	1x-amd64	32	1	16	32	0.02	125.8G	903.8M	0.0	0.
o100-wrkr-scale00000Z	1x-amd64	32	1	16	32	0.02	125.8G	894.3M	0.0	0.
p100-wrkr-scale000010	1x-amd64	32	1	16	32	0.02	125.8G	899.6M	0.0	ø.
o100-wrkr-scale000011	1x-amd64	32	1	16	32	0.03	125.8G	887.8M	0.0	ø.
p100-wrkr-scale000012	1x-amd64	32	1	16	32	0.02	125.8G	892.3M	0.0	0.
o100-wrkr-scale000013	1x-amd64	32	1	16	32	0.02	125.8G	891.3M	0.0	ø.
o100-wrkr-scale000014	1x-amd64	32	1	16	32	0.02	125.8G	897.9M	0.0	0.
o100-wrkr-scale000015	1x-amd64	32	1	16	32	0.02	125.8G	894.8M	0.0	ø.
o100-wrkr-scale000016	1x-amd64	32	1	16	32	0.02	125.8G	903.1M	0.0	ø.
o100-wrkr-scale000017	1x-amd64	32	1	16	32	0.02	125.8G	890.4M	0.0	0.
o100-wrkr-scale000018	1x-amd64	32	1	16	32	0.03	125.8G	905.6M	0.0	ø.
100-wrkr-scale000019	1x-amd64	32	1	16	32	0.02	125.8G	895.4M	0.0	0.
o100-wrkr-scale00001D	1x-amd64	32	1	16	32	0.03	125.8G	901.7M	0.0	0.
p100-wrkr-scale00001K	1x-amd64	32	1	16	32	0.00	125.8G	889.3M	0.0	ø.
uge-master-new	1x-amd64	4	1	4	4	0.93	31.3G	1.4G	0.0	0.
root@uge-master-new:~#										

22 of 20 © Copyright 2020 Dell Inc. Internal Use - Confidential

SCALE – GET TO 2Tb/S+ ACROSS MULTIPLE CLOUDS



23 of 20 © Copyright 2020 Dell Inc.

Dell & Kalray ngenea®

ngenea® Unifies Dell Storage Tiers

ngenea® is a Software-Defined Data Management Solution That Uses Qualified Building Blocks

- Dell & Kalray pixstor[™] Tier-0
 - PowerEdge NVMe Servers
- Dell & Kalray pixstor™ Tier-1 Plus
 - PowerVault Storage Arrays
 - PowerScale
- Archive
 - ECS Enterprise
- Third-Party and Public Cloud

Dell's all-flash platforms for tick data analytics

Supported by STAC benchmark results

Highest Scale and Performance

For the entire data set

F900

•F900

- KDB220506 Antuco + Kanaga Jun.
 11, 2022
- KDB210929 Antuco Oct. 18, 2021

•F800

KDB190430 Antuco + Kanaga Apr.
 30, 2019

•F200

KDB200914 Antuco Sep. 20, 2020

High Performance Edge

For data subsets

F200

Demonstrating real-time performance on smaller data sets (<10TB) and near real-time performance on large data sets (>10 TB) at high concurrency (100s into the millions).

Emerging Workloads

HPC & Al Innovation Lab

Dedicated to designing solutions while staying on the leading edge of new and emerging technologies

You've got the power

High performance computing (HPC) gives you the power to break new ground, make important discoveries, and solve some of the most important challenges of our time. But there are always bigger questions — and bigger data sets — on the horizon, requiring HPC solutions to keep pace with the speed of innovation.

That's why Deli Technologies is committed to enabling more organizations in industry, research and government to use HPC solutions for more innovations and discoveries than any other HPC systems vendor in the world. This passion for innovation has helped make Dell Technologies an industry leader in HPC clusters, storage, networking and software. We've built a nexus of collaboration in the industry, exemplified by the Dell Technologies HPC & Al Innovation Lab.

Working with the HPC community to go further, faster

The Dell Technologies HPC & Al Innovation Lab encompasses a 13,000-square-foot data center devoted to high-performance computing and artificial intelligence (AI). It houses thousands of servers, a wide range of storage and network systems.

But the Lab is more than world-class infrastructure. Bringing together HPC operational excellence and expertise, it is staffed by a dedicated group of computer scientists, engineers and subject matter experts who actively partner and collaborate with customers and other members of the HPC community. The team gets and provides early access to new technologies, integrates and tunes clusters, benchmarks applications, develops best practices, and publishes their results.

When you engage with the Lab, you work directly with these experts to design a solution for your unique HPC workloads. The apportunity to develop and test your configuration with an expert team prior to deployment reduces risk, and because your HPC system is tuned for optimized performance from day one, your team can get to results faster. And that means your organization can recognize a better return on investment.

"The HPC & Al Innovation Lab gives our customers access to cutting-edge technology from Dell, Intel, AMD, NVIDIA, Bright Computing and more. Customers can bring us their workloads and we can help them tune a solution before the technology is readily available."

-Garima Kochhar, Distinguished Engineer