
Streaming to humans:
Can open source hack it?





Getting data to 
people matters



See real-time data1

2

3

4

Interact with tables & widgets

Consume and produce

What do people want? 

Be first class citizens in the data system



Those needs 
catalyze today's 

discussion 

● Distill technical implications

● Review currently popular options

● Itemize unsolved problems

● Describe open-source work 
toward a solution



Technical needs for 
a data transport

1. Tables that don’t suck
2. A ubiquitous backplane
3. Efficient data consumption
4. Browser compatibility



Tables that don’t suck
● They need to update in real time

● Schema changes must be 
transparent to the client

● The same must be true for widgets



Tables that don’t suck
● They need to update in real time

● Schema changes must be 
transparent to the client

● The same must be true for widgets



A ubiquitous backplane

● Reduce plumbing costs for 
new features

● Provide low latency, not just 
high throughput

● Support bi-directionality



● Client must be able to control 
throughput and latency

● Design should aspire to be zero 
copy

● Data must be well packaged

Efficient data consumption



Browser Compatibility
● Common denominator

● Lowest-entry point for eyes and fingers

● Platform independent solution

● Low resource technology

● Mobile-friendly bridge



Contenders for transport
Open, popular, modern



Contenders for transport
Open, popular, modern



Requirements ZeroMQ Kafka Arrow Flight

Low latency Can be Can be Yes

Variable schema Yes Yes Yes

Capable of supporting tables Yes Yes Yes

Efficiently packaged for tables No No Yes

Zero Copy No No Yes

Support for tables that update Sort of Sort of No

Bi-directional streaming Yes Yes Non-streaming

Client control of throughput and latency No No No

Works in a browser No No No



Kafka and ZeroMQ are non-starters

For any pub or sub, the data is a blind 
appending stream.

This kills the requirements in two ways:

1. No design for efficiently sending 
table data

2. Producer and consumer cannot 
collaborate directly

There is no opportunity to improve this.

Good at real-time but…



Arrow Flight

● Table super -powers

● Easily extendable

● Built on gRPC: so streaming 
seems “plausible”

● gRPC is based on http2, so 
browser support has 
potential



What we needed to do

Package “table changes” in Arrow Flight payloads

Employ Flight’s DoExchange() to implement 
custom streaming methods

Make a JS client that can connect to a Flight server 
with streaming support

1

2

3



Introducing

Barrage
Packaging “table changes”

● Data structure for describing table 
changes

● Table “deltas”: add, remove, modify, shift

● streaming_tables



Barrage: DoExchange() for streaming

snapshot(): “Tell me about a subset of this table”
A custom DoGet() call that can specify rows and columns.

subscribe(): “Give me the current contents and push me updates”
Snapshots plus inherited deltas.

publish(): “As a client, I’ll provide the server a snapshot and deltas”
The opposite of subscribe.



The Javascript client was a hard problem
Problems Solutions

gRPC doesn't actually work in browsers gRPC-Web is an almost-gRPC that IS 
accessible to browsers.

gRPC and gRPC-web are not actually 
compatible

Put a proxy between server and client 
(Envoy).

gRPC-web JS client does not support 
streaming binary data

Use improbable-engineering's custom 
implementation.

Web browsers cannot stream data back 
to servers Split methods and add a server-side proxy.

Browsers require SSL for http2: bad for 
localhost & secure environments

Improbable-engineering's web socket 
proxy for gRPC



Repos worth exploring

barrage
github.com/deephaven/barrage

deephaven-core
github.com/deephaven/deephaven-core

web-client-ui
github.com/deephaven/web-client-ui

https://github.com/deephaven/barrage
https://github.com/deephaven/deephaven-core
https://github.com/deephaven/web-client-ui


Try it at deephaven.io

http://https//deephaven.io

