'MODEL' MARRIAGES: PAIRING
IMPLEMENTATIONS & HARDWARE

Luke Markham
ML Engineer - Graphcore

Fe

S
!

%

0 .Sf.

Optimizing model
runtimes

Imagine...
->You’re running a quant team
-> You’ve validated a model

-> [t’s too slow to run in
production

->You need to optimize its
runtime

(RUNTIME RELEVANT) INGREDIENTS OF A
PRODUCTION MODEL

Production Model

A
! \

SOFTWARE
MODEL THEORY IMPLEMENTATION HARDWARE

Not included: DATA

(RUNTIME RELEVANT) INGREDIENTS OF A
PRODUCTION MODEL

Production Model

SOFTWARE
IMPLEMENTATION

"\ /

MODEL THEORY HARDWARE

The Hardware Lottery

Sara Hooker

Google Research, Brain Team
shooker@google.com

Abstract

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to deseribe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.

A MODEL MARRIAGE

Software . Hardware
Implementation
Vector vs Scalar CPU
Floating point
representation GPU
Language & IPU
Framework
Model Input- Parallel Sequential legmination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software . Hardware
Implementation

Vector vs Scalar

CPU
Floating point
: GPU
representation | Tree-based workloads,
or conditional control
flow (if-statements).
L & . .
e e Decision tree is a good IPU
example.
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition

footprint intensity
routing

Software
Implementation

Vector vs Scalar

Floating point
representation

Matrix operations,
batched inputs, map

A MODEL MARRIAGE

Language & functions, etc.
Framework
Tree-based workloads,
or conditional control
flow.
Model Input- Parallel
@ Theory dependent

routing

Sequential

Termination
condition

Memory
footprint

Hardware

CPU

GPU

IPU

Arithmetic
intensity

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Iterative algorithms, loops,
recursive algorithms.

Tree-based workloads, Matrix operations,
or conditional control batched inputs,
flow. map functions, etc.

Input- Parallel Sequential Termination
dependent condition

routing

Memory
footprint

Hardware

CPU

GPU

IPU

Arithmetic
intensity

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Tree-based workloads, Matrix operations,

or conditional control batched inputs,
flow. map functions, etc.

Input-
dependent
routing

Parallel

Fixed sequential steps vs
convergence vs other

condition?
Iterative algorithms,
loops, recursive
algorithms.
Sequential Termination Memory
condition footprint

Hardware

CPU

GPU

IPU

Arithmetic
intensity

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Tree-based workloads, Matrix operations,

or conditional control batched inputs,

flow. map functions, etc.
Input- Parallel
dependent

routing

Hardware
CPU
GPU
How does it compare to
on-chip and off-chip?
IPU

Iterative algorithms,
loops, recursive
algorithms.

Fixed sequential steps vs
convergence vs other
condition?

Sequential Termination Memory Arithmetic
condition footprint intensity

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Tree-based workloads, Matrix operations,

or conditional control batched inputs,

flow. map functions, etc.

Input- Parallel
dependent

routing

Hardware

CPU

GPU

FLOPS computed per Byte

read
IPU
Iterative algorithms, Fixed sequential steps vs How does it
loops, recursive convergence vs other compare to
algorithms. et on-chip and
) off-chip?
Sequential Termination Memory Arithmetic
condition footprint intensity

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Tree-based workloads, Matrix operations,

or conditional control batched inputs,

flow. map functions, etc.

Input- Parallel
dependent

routing

Hardware

CPU

GPU

IPU

Iterative algorithms, How does it

loops, recursive

Fixed sequential steps vs
convergence vs other cempareito FLOPS computed

algorithms. condition? on-chip and per Byte read
off-chip?
Sequential Termination Memory Arithmetic
condition footprint intensity

CASE STUDY

CRR ALGORITHM — AN OVERVIEW

Forward pass: create a tree of prices by assuming e
price of the option will increase/decrease by a

specific factor

Backward pass: iteratively calculate binomial value at j

the previous timepoint. This is the expected value

discounted by the risk-free rate.

u.S,

d.S,

MODEL THEORY

n =2 n=3
u'S,
P
u’.S.
i-p
u' dS
P
ud.S,
]-
u.d’.S
P
d*.S,
19
d’s,

14

A MODEL MARRIAGE

Software . Hardware
Implementation
Vector vs Scalar - -
Cox-Ross-Rubinstein CPU
Floating point Call vs Put.
representation American vs GPU
European.
High?
Parallelisabl Iterative, loop- Fixed
Language & arafie |s'a € based. Some number of IPU
Framework over options lookahead. steps Low O(n)
and across tree
Tree-based workloads, Matrix operations, Iterative algorithms, e s S How does it
or conditional control batched inputs, loops, recursive e compare to FLOPS computed
flow. map functions, etc. algorithms. condition? z?f:iEiIZSnd per Byte read
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Hardware
CPU
Portfolio variance
positions.T @ cov @ positions
GPU
Highly Large
parallel]fc“e;no.l’yt
ootprin
IPU
Tree-based workloads, Matrix operations, Iterative algorithms, o T How does it
or conditional control batCthd i:‘puts, t Ioops., recursive et compare to FLOPS computed
flow. map tunctions, etc. algorithms. oD on-chip and per Byte read
off-chip?
Input- Parallel Sequential Termination Memory Arithmetic
dependent condition footprint intensity

routing

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

A MODEL MARRIAGE

Hardware
Hamiltonian Monte Carlo CPU
Hamiltonian dynamics applied
iteratively
GPU
Low
Iterative. No
lookahead. IPU
Tree-based workloads, Matrix operations, Iterative algorithms, e s S How does it
or conditional control batched inputs, loops, recursive et compare to FLOPS computed
flow. map functions, etc. algorithms. condition? on-chip and per Bytelread
off-chip?
Input- Parallel Sequential Term.m-atlon Memory Arithmetic
dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework
Tree-based workloads, Matrix operations,
or conditional control batched inputs,
flow. map functions, etc.
Model Input- Parallel
@ Theory dependent

routing

Flexible MIMD
processor. Great
ease-of-use
experience.

Iterative algorithms, Fixed sequential steps vs

IOOpS.’ TR convergence vs other
algorithms. condition?
Sequential Termination
condition

Hardware

CPU

Fast clock speed

GPU

Large cache and IPU
expandable
memory

How does it

compare to FLOPS computed

on-chip and per Byte read
off-chip?

Memory Arithmetic
footprint intensity

A MODEL MARRIAGE

Software . Y
Implementation

Flexible MIMD processor.

Great ease-of-use experience.
Vector vs Scalar CPU

SIMD processor

Floating point

representation Higher flop rates than CPUs GPU
due to thousands of SIMD
lanes
Language & Thousands SIMD IPU
Framework lanes

Optimised for high

Tree-based workloads, Matrix operations, lterative algorithms, o] ST S How does it
or conditional control batched in‘puts, loops, recursive convergence vs other compare to FLOPS computed
flow. map functions, etc. algorithms. condition? z?f_—cc};iiz?and per Byte read
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software Y
Implementation

Flexible MIMD processor.

Great ease-of-use experience.
Vector vs Scalar CPU

MIMD processor, like a CPU. -
processor
Floating point 1472 cores. FLOP rates g high flop GPU

representation comparable to GPUs.

900MB on-chip SRAM.

Language & IPU
Framework
MIMD parallelism
Optimised for low

Tree-based workloads, Matrix operations, Iterative algorithms, ST AT S How does it

or conditional control batched in.puts, loops, recursive cogvergence T compare to FLOPS computed

flow. map functions, etc. algorithsas: condition? Z?f_-ccuiizfnd per Byte read

Model Input- Parallel Sequential Termination Memory Arithmetic

@ Theory dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software . Hardware
Implementation
Flexible MIMD processor.
Great ease-of-use experience.
Vector vs Scalar CPU
SIMD
processor
Floating point ?:t(i?gh flop
representation GPU

MIMD processor. High
FLOP rates. Large on-

Language & chip SRAM IPU
Framework
Tree-based workloads, Matrix operations, Iterative algorithms, St T ST How does it
or conditional control batched in.puts, loops, recursive convergence vs other compare to FLOPS computed
flow. map functions, etc. algorithms. condition? z?f'_cc:ii?)fnd per Byte read
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

Software
Implementation

Vector vs Scalar

Floating point
representation

Language &
Framework

Model

@ Theory

Tree-based workloads,
or conditional control

dependent
routing

A MODEL MARRIAGE

Scalar is the base case.
Vector implementations are usually faster.

Vectorisation not always possible.

Matrix operations, Iterative algorithms,

batched inputs, loops, recursive
f ti , etc. i
map functions, etc algorithms. condition
Parallel Sequential

Fixed sequential steps vs
convergence vs other

Termination
condition

How does it
compare to
on-chip and
off-chip?

Memory
footprint

Hardware
Flexible MIMD processor.
Great ease-of-use experience.
SIMD
processor
and high flop
rates. G P U

MIMD processor. High
FLOP rates. Large on-

chip SRAM IPU

FLOPS computed
per Byte read

Arithmetic
intensity

A MODEL MARRIAGE

Software
Implementation

Vector implementations are usually faster.
Vectorisation not always possible, scalar is the

base case.

Requires

Vector vs Scalar

Floating point
representation

Language &
Framework

Matrix operations,
batched inputs,
map functions, etc.

Tree-based workloads,
or conditional control

vectorisation

Iterative algorithms,
loops, recursive

Fixed sequential steps vs
convergence vs other

Hardware

Flexible MIMD processor.
Great ease-of-use experience.

CPU

SIMD
processor
and high flop

GPU

MIMD processor. High
FLOP rates. Large on-
chip SRAM

IPU

How does it

BSIEE 21 FLOPS computed
on-chip and per Byte read
off-chip?

condition?
()

flow. algorithms.
Model Input- Parallel Sequential
@ Theory dependent

routing

O/
Termination
condition

Memory Arithmetic
footprint intensity

A MODEL MARRIAGE

Software
Implementation

Hardware

Vector implementations are usually faster.
Vectorisation not always possible, scalar is the
base case.

Flexible MIMD processor.
Great ease-of-use experience.

Vector vs Scalar

CPU

SIMD
processor
and high flop

rates. G P U

Floating point
representation

Hard to
vectorise

Hard to
vectorise MIMD processor. High

FLOP rates. Large on-
hip SRAM
Language & Hard to e IPU
Framework)
vectorise
Tree-based workloads, Matrix operations, Iterative atgprithms, e T S How does it
or conditional control batched invatS/ loops, recursive convergence vs other compare to FLOPS computed
flow. map functions, etc. algorithms. condition? gpf_-i:iizjnd per Byte read
- 1 "..o. 8
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

Software
Implementation

Vector implementations are usually faster.
Vectorisation not always possible, scalar is the

base case.
Vector vs Scalar
Floating point
representation
Language &
Framework
Tree-based workloads,
or conditional control
flow.
Model Input-

@ Theory depgndent
routing

A MODEL MARRIAGE

Key to avoiding arithmetic underflow/overflow, accumulation

errors, etc.

Matrix operations,
batched inputs,
map functions, etc.

Parallel

Iterative algqrithms, Fixed sequential steps vs How does it
Ioops., recursive convergence vs other comp:are to
algorithms. et on-chip and
off-chip?
Sequential Termination Memory
condition footprint

Hardware

Flexible MIMD processor.
Great ease-of-use experience.

CPU

SIMD
processor
and high flop

rates. G P U

MIMD processor. High
FLOP rates. Large on-

chip SRAM IPU

FLOPS computed
per Byte read

Arithmetic
intensity

A MODEL MARRIAGE

Software
Hardware
Implementation
Vector implementations are usually faster.)
R . . Flexible MIMD processor.
Vectorisation not always possible, scalar is the .
Great ease-of-use experience.
base case.
Vector vs Scalar CPU
SIMD
processor
Does not support and high flop

Floating point

: FP64 or higher
representation

rates. G P U

MIMD processor. High
FLOP rates. Large on-

Language & IPU
Framework

Tree-based workloads, Matrix operations, Iterative algorithms, Fixed sequential steps vs How does it

or conditional control batched invatS/ loops, recursive convergence vs other compare to FLOPS computed

flow. map functions, etc. algorithms. condition? g:f_.i:iizjnd per Byte read

7~ ! "'.., N
Model Input- Parallel Sequential Termination Memory Arithmetic

@ Theory dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software . Hardware
Implementation
Vector implementations are usually faster. .
Vectorisation not always possible, scalar is the Flexible MIMD processo.r.
base case. Great ease-of-use experience.
Vector vs Scalar CPU
Key to avoiding SIMD
arithmetic 2 2 2 A et
- Find a framework with sufficient expressivity to make your i
FIoating point accumulation errors. . . ?:;i:lgh lop
representation theory and implementation easy. GPU

MIMD processor. High
FLOP rates. Large on-

Language & ChiprSRAM IPU
Framework
Tree-based workloads, Matrix operations, Iterative algorithms, St T ST How does it
or conditional control batched in.puts, loops, recursive convergence vs other compare to FLOPS computed
flow. map functions, etc. algorithms. condition? z?f'_cc:ii?)fnd per Byte read
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

A MODEL MARRIAGE

Software
Implementation

Hardware

(N

Vector implementations are usually faster.
Vectorisation not always possible, scalar is the
base case.

Flexible MIMD processor.
Great ease-of-use experience.

Vector vs Scalar

CPU

Requires
vectorisation

Floating point
representation

. GPU

Hes
MIMD processoy. High
FLOP rates. Large on-

Hyrd to
vectorise

Language & chip-SRAM P
Framework U
Expressivity and ease
of implementation
Tree-based workloads, Matrix operations, [terative algprithms, S el S v How does it
or conditional control batched in'puts, loops, recursive convergence vs other compare to FLOPS computed
flow. map functions, etc. algorithsas: condition? g:f__cc:iiz?nd per Byte read
() (1) () ()
|) 3+) &)
Model Input- Parallel Sequential Termination Memory Arithmetic
@ Theory dependent condition footprint intensity

routing

CASE STUDY — SOFTWARE AND
HARDWARE

COX ROSS RUBINSTEIN

Scalar implementations are the base
case.

Can be vectorized in multiple ways:
across the tree, or across multiple
options

SOFTWARE
IMPLEMENTATION

double Binomial(int n, double Spot, double K, double r, double g, double v, doub
le T, char PutCall, char OpStyle)
L

wnt 1, J;

vector<vector<double> > S(n + 1, vector<double>(n + 1));

vector<vector<double> > Op(n + 1, vector<double>(n + 1));

double dt, u, d, p;

dt =T / n;

u exp(v*sqrt(dt));

d 1/ u;

p (exp((r- g)*dt) - d) / (u - d);

// Build the binomial tree
for (j =8; j <= n; j++) {

or (1=0; 1<=j; i)
s[il[j] = Spot‘pow(u j
b

{
- 1)*pow(d, 1);

b

// Compute terminal payoffs
for (1 =0; 1 <=n; i4++) {
if (PutCall == 'C')
Op[11[n] = max(S[1][n] - K, 0.0);
else
Op[i][n] = max(K - S[1][n], 0.0);

// Backward recursion through the tree
for (j =n -1; j>=0; j--) {
F(1=0; 1<=3; 1H) {
.OpStyle = "E |
[j] = exp(-rxdt)*(p*(0p[i]1[j + 11) + (1 - p)*(Op[i + 1][j + 11));
- {

(Putlall = 'C')
Op[lj[]] = max(S[1][]] - K, exp(-r*dt)*(p*(0p[1][] + 1]) + (1 - p)*(Op[1 +
1107 + 11)));
else
Op[1][j] = max(K - S[11[j], exp(-r*dt)*(p*(0p[1]1[j + 11) + (1 - p)*(0p[i +
1][1 + 11)));

I
b5

return Op[0][0];
i

30

SOFTWARE
IMPLEMENTATION

VECTORISED IMPLEMENTATIONS CAN HAVE SIDE
EFFECTS

Normalised Throughput — Scalar Code Normalised Throughput — Vectorised Code
American vs European Options American vs European Options
3 3
2.5 2.5
5 5
Q. Q.
@ 2 ® 2
> =)
o e
= 15 = 15
© ©
Q 2
— 1 — 1
£ £
@) O
=R S 05
0 0
Scalar Vector
American Options European Options American Options European Options

@ 31

SOFTWARE
IMPLEMENTATION

def AutoCallableNote(valuationDate, couponDates, strike, pastFixings,
autoCallBarrier, couponBarrier, protectionBarrier, hasMemory, finalRedemptionFormula,
coupon, notional, dayﬂounter, process, generator, nPaths, curve):

Break statements inside for loops...
vectorization=hard.

loop through all simulated paths
for path in paths:
payoffPV = 0.0
unpaidCoupons ¢]
hasAutoCalled = False

loop through set of coupon dates and index raties

for date, index in zip(couponDates, (path / strike)):
if autocall event has been triggered, immediate exit from this path
if{hasautoCalled): break
payoff = 8.0

MAPPING OPTIONS TO TILES

6 6
P P P
= = Tiles =
M M M

900

800

700

600

500

400

300

200

100

OPTION PRICING BENCHMARK

Throughput comparison between IPU and CPU

American Call Options — IPU vs CPU

Why is the IPU faster?

1 * 50x more cores
e 20x the on-chip memory
* The IPU maintains enough on-
21X chip memory to process an
option with each of its 1472x6
threads
mIPU © CPU

Not a STAC benchmark

34

THANKYOU

For:

Updates on our GPU benchmarking

Updates on IPU performance

Trying out Cox-Ross-Rubinstein out on IPUs for yourself!

Any other Graphcore related queries

Email lukem@graphcore.ai

35

APPENDIX

ABSTRACT

“'Model' marriages: Pairing implementations and hardware".

Box famously said that all models are wrong but some are useful. Financial firms could add a proviso: “a model is only useful
if we can execute it quickly and efficiently”. High performance depends on three variables: the problem size/shape, the
implementation code, and the hardware platform. But financial models vary widely, hardware choices expand every few
months, and implementation options abound.

Technologists can benefit significantly from a systematic approach to understanding how the three variables interact. Luke
has just such an approach. With the help of a real-life study that Graphcore performed for a hedge fund (optimizing Cox-
Ross-Rubenstein to price millions of options), Luke will explain a process that categorizes and grades workloads and
determines the best pairing of implementation and hardware.

@ 37

