'MODEL' MARRIAGES: PAIRING
IMPLEMENTATIONS & HARDWARE

Luke Markham
ML Engineer - Graphcore

Fe

S
!

%

0 .Sf.




Optimizing model
runtimes

Imagine...
->You’re running a quant team
-> You’ve validated a model

-> [t’s too slow to run in
production

->You need to optimize its
runtime
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Abstract

Hardware, systems and algorithms research communities have historically
had different incentive structures and fluctuating motivation to engage with
each other explicitly. This historical treatment is odd given that hardware
and software have frequently determined which research ideas succeed (and
fail). This essay introduces the term hardware lottery to deseribe when a
research idea wins because it is suited to the available software and hard-
ware and not because the idea is superior to alternative research directions.
Examples from early computer science history illustrate how hardware lot-
teries can delay research progress by casting successful ideas as failures.
These lessons are particularly salient given the advent of domain special-
ized hardware which make it increasingly costly to stray off of the beaten
path of research ideas. This essay posits that the gains from progress in
computing are likely to become even more uneven, with certain research
directions moving into the fast-lane while progress on others is further ob-
structed.
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CRR ALGORITHM — AN OVERVIEW

Forward pass: create a tree of prices by assuming e
price of the option will increase/decrease by a

specific factor

Backward pass: iteratively calculate binomial value at j

the previous timepoint. This is the expected value

discounted by the risk-free rate.
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COX ROSS RUBINSTEIN

Scalar implementations are the base
case.

Can be vectorized in multiple ways:
across the tree, or across multiple
options

SOFTWARE
IMPLEMENTATION

double Binomial(int n, double Spot, double K, double r, double g, double v, doub
le T, char PutCall, char OpStyle)
L

wnt 1, J;

vector<vector<double> > S(n + 1, vector<double>(n + 1));

vector<vector<double> > Op(n + 1, vector<double>(n + 1));

double dt, u, d, p;

dt =T / n;

u exp(v*sqrt(dt));

d 1/ u;

p (exp((r- g)*dt) - d) / (u - d);

// Build the binomial tree
for (j =8; j <= n; j++) {

or (1=0; 1<=j; i)
s[il[j] = Spot‘pow(u j
b

{
- 1)*pow(d, 1);

b

// Compute terminal payoffs
for (1 =0; 1 <=n; i4++) {
if (PutCall == 'C')
Op[11[n] = max(S[1][n] - K, 0.0);
else
Op[i][n] = max(K - S[1][n], 0.0);

// Backward recursion through the tree
for (j =n -1; j>=0; j--) {
F(1=0; 1<=3; 1H) {
.OpStyle = "E |
[j] = exp(-rxdt)*(p*(0p[i]1[j + 11) + (1 - p)*(Op[i + 1][j + 11));
- {

(Putlall = 'C')
Op[lj[]] = max(S[1][]] - K, exp(-r*dt)*(p*(0p[1][] + 1]) + (1 - p)*(Op[1 +
1107 + 11)));
else
Op[1][j] = max(K - S[11[j], exp(-r*dt)*(p*(0p[1]1[j + 11) + (1 - p)*(0p[i +
1][1 + 11)));

I
b5

return Op[0][0];
i
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VECTORISED IMPLEMENTATIONS CAN HAVE SIDE
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Normalised Throughput — Scalar Code Normalised Throughput — Vectorised Code
American vs European Options American vs European Options
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SOFTWARE
IMPLEMENTATION

def AutoCallableNote(valuationDate, couponDates, strike, pastFixings,
autoCallBarrier, couponBarrier, protectionBarrier, hasMemory, finalRedemptionFormula,
coupon, notional, dayﬂounter, process, generator, nPaths, curve):

Break statements inside for loops...
vectorization=hard.

# loop through all simulated paths
for path in paths:
payoffPV = 0.0
unpaidCoupons ¢]
hasAutoCalled = False

# loop through set of coupon dates and index raties

for date, index in zip(couponDates, (path / strike)):
# if autocall event has been triggered, immediate exit from this path
if{hasautoCalled): break
payoff = 8.0
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OPTION PRICING BENCHMARK

Throughput comparison between IPU and CPU

American Call Options — IPU vs CPU

Why is the IPU faster?

1 * 50x more cores
e 20x the on-chip memory
* The IPU maintains enough on-
21X chip memory to process an
option with each of its 1472x6
threads
mIPU © CPU

Not a STAC benchmark
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THANKYOU

For:

Updates on our GPU benchmarking

Updates on IPU performance

Trying out Cox-Ross-Rubinstein out on IPUs for yourself!

Any other Graphcore related queries

Email lukem@graphcore.ai
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ABSTRACT

“'Model' marriages: Pairing implementations and hardware".

Box famously said that all models are wrong but some are useful. Financial firms could add a proviso: “a model is only useful
if we can execute it quickly and efficiently”. High performance depends on three variables: the problem size/shape, the
implementation code, and the hardware platform. But financial models vary widely, hardware choices expand every few
months, and implementation options abound.

Technologists can benefit significantly from a systematic approach to understanding how the three variables interact. Luke
has just such an approach. With the help of a real-life study that Graphcore performed for a hedge fund (optimizing Cox-
Ross-Rubenstein to price millions of options), Luke will explain a process that categorizes and grades workloads and
determines the best pairing of implementation and hardware.
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