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Differentiating Capacity and Bandwidth
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Move up the Hierarchy for Performance
Share Data for Fidelity and Productivity
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& local memory
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Cray Perspective on I/O in HPC  

● Expensive compute resources sit idle during I/O  
● Want to have highest possible bandwidth when doing I/O

● Disk-based PFS bandwidth is expensive
● Bandwidth via controllers inflates the effective cost

● PFS is still the preferred option for scalability & permanence

● Many applications do I/O in bursts
● A cycle of Read  Compute  Write

● Checkpoints

● Flash bandwidth is relatively inexpensive
● Effective for I/O load at beginning/end of job, during checkpointing



The Burst Buffer Concept

● Definition
● A high-bandwidth, lower-capacity, “buffer” space

● Backed by a disk-based PFS 

● Increased BB bandwidth decreases time 
programs spend on I/O
● BB can interact with PFS before, during, and after 

program use 

● Stage data in to BB before computes allocated 

● Stage data back out to PFS after computes deallocated

● Stage data in or out while program in computational 
phase 

● Burst buffers offer improved bandwidth per dollar
● do faster I/O to BB, write out to slower PFS over time 
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DataWarp Notion – Minimize Compute Residence Time
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Aries Network
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DataWarp 51-78% faster  than Lustre (R/W)

Metrics
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Yet More Metrics
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Great but not a Game-Changer

● Faster than PFS

● More effective than local SSD

● More manageable… BUT how to change the game….



Why not read shared data into memory?

● There’s lots of nodes – maybe 100Tb of memory 

across a cluster

● More than enough for all your market data

● What if all nodes could access all the data at memory speeds….?

● PERFORMANCE AND PRODUCTIVITY

● Well you CAN

● Open SHMEM

● PGAS languages e.g. Co-Array C++, UPC



Shared Global Memory

Market Data e.g. 5 TB
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HPC Programming Model Taxonomy 

● Communication Libraries

● MPI, PVM, SHMEM, ARMCI, GASNet, …

● Shared Memory Programming Models

● OpenMP, pthreads, …

● Hybrid Models

● MPI+OpenMP, MPI+CUDA, MPI+OpenCL, …

● Traditional PGAS Languages

● Unified Parallel C (UPC), Co-Array Fortran (CAF), Titanium (Java), Co-Array C++

● HPCS Languages

● Chapel, X10, Fortress

● GPU Programming Models

● CUDA, OpenCL, PGI annotations, CAPS, …

● Others

● Global Arrays, Charm++, ParalleX, Cilk, TBB, PPL, parallel Matlabs, Star-P, PLINQ, Map-Reduce, 

DPJ, Yada, …



PGAS Programming Models

● Characteristics:

● execute an SPMD program (Single Program, Multiple Data)

● all binaries share a namespace

● namespace is partitioned, permitting reasoning about locality

● binaries also have a local, private namespace

● compiler introduces communication to satisfy remote references

● Cray compilers optimize by overlapping compute and communications, unlike e.g. OpenMP



Traditional PGAS Languages: in a Nutshell

Co-Array C++: extend 
C++ by adding…

• a new array dimension to 
refer to processor space

• collectives and 
synchronization routines

UPC: extend C by 
adding support for…

• block-cyclic distributed 
arrays

• pointers to variables on 
remote nodes

• a memory consistency 
model

Titanium: extend Java by 
adding support for…

• multidimensional arrays

• pointers to variables on 
remote nodes

• synchronization safety 
via the type system

• …region-based memory 
management

• …features to help with 
halo communications 
and other array idioms

Comparable performance to MPI, sometimes better


