
Sharing NVRAM and DRAM
For Performance, Productivity, and

Model Fidelity
June 2016

Philip Filleul – Segment Director FS

2

Differentiating Capacity and Bandwidth

0.0	TB	

5000.0	TB	

10000.0	TB	

15000.0	TB	

20000.0	TB	

25000.0	TB	

30000.0	TB	

35000.0	TB	

40000.0	TB	

45000.0	TB	

50000.0	TB	

0%	

20%	

40%	

60%	

80%	

100%	

0	 10
	

30
	

50
	

70
	

90
	

11
0	

13
0	

15
0	

17
0	

19
0	

21
0	

23
0	

25
0	

27
0	

29
0	

31
0	

33
0	

35
0	

37
0	

39
0	

41
0	

43
0	

45
0	

47
0	

49
0	

51
0	

53
0	

55
0	

57
0	

59
0	

61
0	

63
0	

65
0	

67
0	

69
0	

71
0	

10
80

	
18
00

	
25
20

	
32
40

	

Capacity	

P	{access}	

IO
P

S

G
B

/s

G
B

/s

R
E

Q
U

IR
E

M
E

N
T

S

Move up the Hierarchy for Performance
Share Data for Fidelity and Productivity

3

& local memory

Shareable

Cray Perspective on I/O in HPC

● Expensive compute resources sit idle during I/O
● Want to have highest possible bandwidth when doing I/O

● Disk-based PFS bandwidth is expensive
● Bandwidth via controllers inflates the effective cost

● PFS is still the preferred option for scalability & permanence

● Many applications do I/O in bursts
● A cycle of Read  Compute  Write

● Checkpoints

● Flash bandwidth is relatively inexpensive
● Effective for I/O load at beginning/end of job, during checkpointing

The Burst Buffer Concept

● Definition
● A high-bandwidth, lower-capacity, “buffer” space

● Backed by a disk-based PFS

● Increased BB bandwidth decreases time
programs spend on I/O
● BB can interact with PFS before, during, and after

program use

● Stage data in to BB before computes allocated

● Stage data back out to PFS after computes deallocated

● Stage data in or out while program in computational
phase

● Burst buffers offer improved bandwidth per dollar
● do faster I/O to BB, write out to slower PFS over time

CPU

Near Memory
(HBM/HMC)

Burst Buffer
(SSD)

Far Memory
(DRAM/NVDIMM)

Parallel File System
(HDD)

O
n

 N
o

d
e

O
ff

 N
o

d
e

DataWarp Notion – Minimize Compute Residence Time

6

Time (Lustre Only)

Node

Count

Time (DataWarp)

Node

Count
DW

Preload

DW

Post Dump

Initial

Data

Load

Final

Data

Writes

Timestep Writes

C
o
m

p
u
te

Compute Nodes

Compute Nodes - Idle

I/O Time Lustre

I/O Time DW

DW Nodes

Key
Timestep Writes (DW)

Aries Network

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

Compute

32 cores
Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

memory memory memory memory memory memory memory memory

8
G

B
/s

8
G

B
/s8

G
B

/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

XC40 Architecture

SSDs

Write ~3GB/s

Read ~5GB/s

DVS

Not a STAC

Benchmark

Aries Network

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

Compute

32 cores
Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

memory memory memory memory memory memory memory memory

8
G

B
/s

8
G

B
/s8

G
B

/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

DataWarp 1 Node with 1 Thread, 1 job

8MB chunks

SSDs

Write ~3GB/s

Read ~5GB/s

DVS

1x

READ 1.16 GB/s

WRITE 0.92 GB/s

Not a STAC

Benchmark

DataWarp 51-78% faster than Lustre (R/W)

Metrics

0

0.5

1

1.5

2

2.5

3

3 GB 7 GB 13 GB 26 GB 40 GB 53 GB 66 GB 79 GB 92 GB 106 GB

Single Node

Lustre READ Lustre WRITE DataWarp READ DataWarp WRITE

Lustre Variance 213%

DW Variance 20%

Not a STAC

Benchmark

Aries Network

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

Compute

32 cores
Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

memory memory memory memory memory memory memory memory

8
G

B
/s

8
G

B
/s8

G
B

/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

DataWarp 4 Nodes with 32 Threads, 128 jobs

SSDs

Write ~3GB/s

Read ~5GB/s

8MB chunks

DVS

32x

READ 19.85 GB/s

WRITE 21.04 GB/s

32x
32x 32x

Not a STAC

Benchmark

Yet More Metrics

0.000 sec

1.000 sec

2.000 sec

3.000 sec

4.000 sec

5.000 sec

6.000 sec

13 GB 26 GB 53 GB 106 GB 158 GB 211 GB 264 GB 317 GB 370 GB 422 GB

4 node 4 to 128 concurrent jobs

Lustre READ Lustre WRITE DataWarp READ DataWarp WRITE

Lustre Variance 722%

DW Variance 111%

DataWarp

5683.5% lower latency READS

55-71% lower latency WRITES

Not a STAC

Benchmark

Aries Network

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

DataWarp

SSD SSD

Compute

32 cores
Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

Compute

32 cores

memory memory memory memory memory memory memory memory

8
G

B
/s

8
G

B
/s8

G
B

/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

8
G

B
/s

DataWarp 8 Nodes with 32 Threads, 256 jobs
SSDs

Write ~3GB/s

Read ~5GB/s

8MB chunks

DVS

32x

READ 63.35 GB/s

WRITE 75.16 GB/s

32x
32x 32x 32x32x32x32x

Not a STAC

Benchmark

Great but not a Game-Changer

● Faster than PFS

● More effective than local SSD

● More manageable… BUT how to change the game….

Why not read shared data into memory?

● There’s lots of nodes – maybe 100Tb of memory

across a cluster

● More than enough for all your market data

● What if all nodes could access all the data at memory speeds….?

● PERFORMANCE AND PRODUCTIVITY

● Well you CAN

● Open SHMEM

● PGAS languages e.g. Co-Array C++, UPC

Shared Global Memory

Market Data e.g. 5 TB

M1

CN1

T1.1-T1.36

M2

CN2

T2.1-T2.36

M3

CN3

T3.1-T3.36

M100

CN

100

T100.1-T100.36

Partitioned but

Shared Memory

Fast Block write 50 GB each

Compute nodes

18 cores running

e.g. 36 threads

Fast thread access

to remote memory

at near local speed

Matrix elements

LEXICALLY VISIBLE

HPC Programming Model Taxonomy

● Communication Libraries

● MPI, PVM, SHMEM, ARMCI, GASNet, …

● Shared Memory Programming Models

● OpenMP, pthreads, …

● Hybrid Models

● MPI+OpenMP, MPI+CUDA, MPI+OpenCL, …

● Traditional PGAS Languages

● Unified Parallel C (UPC), Co-Array Fortran (CAF), Titanium (Java), Co-Array C++

● HPCS Languages

● Chapel, X10, Fortress

● GPU Programming Models

● CUDA, OpenCL, PGI annotations, CAPS, …

● Others

● Global Arrays, Charm++, ParalleX, Cilk, TBB, PPL, parallel Matlabs, Star-P, PLINQ, Map-Reduce,

DPJ, Yada, …

PGAS Programming Models

● Characteristics:

● execute an SPMD program (Single Program, Multiple Data)

● all binaries share a namespace

● namespace is partitioned, permitting reasoning about locality

● binaries also have a local, private namespace

● compiler introduces communication to satisfy remote references

● Cray compilers optimize by overlapping compute and communications, unlike e.g. OpenMP

Traditional PGAS Languages: in a Nutshell

Co-Array C++: extend
C++ by adding…

• a new array dimension to
refer to processor space

• collectives and
synchronization routines

UPC: extend C by
adding support for…

• block-cyclic distributed
arrays

• pointers to variables on
remote nodes

• a memory consistency
model

Titanium: extend Java by
adding support for…

• multidimensional arrays

• pointers to variables on
remote nodes

• synchronization safety
via the type system

• …region-based memory
management

• …features to help with
halo communications
and other array idioms

Comparable performance to MPI, sometimes better

