
The Birth and future of SG14 Low latency for HFT
Michael Wong

Codeplay Software, VP of Research and Development
ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong

Head of Delegation for C++ Standard for Canada

Vice Chair of Programming Languages for Standards Council of Canada
Past OpenMP CEO: http://openmp.org/wp/about-openmp/

Chair of WG21 SG5 Transactional Memory: https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgroups#!forum/tm

Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded:
https://groups.google.com/a/isocpp.org/forum/?fromgroups#!forum/sg14

Editor: C++ SG5 Transactional Memory Technical Specification

Editor: C++ SG1 Concurrency Technical Specification

http:://wongmichael.com/about

 New York STAC 2016

http://isocpp.org/wiki/faq/wg21�
https://groups.google.com/a/isocpp.org/forum/?fromgroups�

© 2016 Codeplay Software Ltd. 2

Acknowledgement and Disclaimer
• �Numerous people internal and external to the
original C++/Khronos/OpenCL/SYCL group, in
industry and academia, have made contributions,
influenced ideas, written part of this presentations,
and offered feedbacks to form part of this talk.

• �I even lifted this acknowledgement and disclaimer
from some of them.

• �But I claim all credit for errors, and stupid mistakes.
These are mine, all mine!

• �

© 2016 Codeplay Software Ltd. 3

Legal Disclaimer
• �This work represents the view of the author and
does not necessarily represent the view of Codeplay,
IBM, Khronos, OpenMP, or ISOCPP.org.

• �Other company, product, and service names may be
trademarks or service marks of others.

• This is part of an ongoing keynote presentation for
upcoming C/C++ Standard status modified as C and
C++ changes. Please attribute credit accordingly.

© 2016 Codeplay Software Ltd. 4

Codeplay: world expert in Heterogeneous software platform for self-driving cars,
AI/machine learning/neural networks, computer vision, data centres, graphics,

mobile devices, with Open Standards

Processors IP
CPU, GPU, DSP, VPU, ViSP

Semiconductors

Module Integration

Algorithms

Software/Middleware
Tools & layers to Standards

ISO 26262

 LLVM

ISO C99/11 or C++
11/14/17/20 compliant

Major
Corporation

© 2016 Codeplay Software Ltd. 5

Among the top users of C++!

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

© 2016 Codeplay Software Ltd. 6

The Breaking Wave: N4456
CppCon 2014

C++ committee panel leads to impromptu

game developer meeting.

Google Group created.

Discussions have outstanding industry
participation.

N4456 authored and published!

© 2016 Codeplay Software Ltd. 7

Formation of SG14
N4456 presented at Spring 2015

Standards Committee Meeting in Lenexa.
Very well received!

Formation of Study Group 14:
Low Latency

Games/Financial/Trading/Simulation
+Embedded Devices
Chair: Michael Wong

 SG14 past meetings:

● CppCon 2015
● GDC 2016
● London STAC SG14 Neil Horlock
● Chicago STAC SG14 Tom Rodgers/Nevin Liber

 SG14 future meetings:

● New York STAC: today
● Amsterdam HFT SG14 Optiver: June 27
● CPPCON 2016: Sept 21
● Meeting C++ Games Track: Nov 18/19

© 2016 Codeplay Software Ltd. 8 https://isocpp.org/std/the-committee

© 2016 Codeplay Software Ltd. 9

Shared Common Interest
Better support in C++ for:

Audience of SG14 Goals and Scopes

Video Games

Interactive Simulation

Low Latency
Computation

Constrained
Resources

Real-time Graphics

Simulation and
Training Software

Finance/Trading

Embedded
Systems/Automotive

HPC/BigData Analytic
workload

© 2016 Codeplay Software Ltd. 10

Memory Usage

• Fixed memory budgets
• 100’s of MB to a couple GB

• Shared CPU/GPU memory
• 100’s of MB in texture data, animations, framebuffers…

• No swap space and no temporary disk scratch space
• Upgrading hardware isn’t an option

• Users may not even have the option (eg: game consoles)

© 2016 Codeplay Software Ltd. 11

Computation Time
• Cost of debug iterators in vendor libraries

• Many game engines replace even std::vector
• Each implementation has a different magic incantation to turn off unwanted

“features”

• dynamic_cast versus home-grown reflection systems
• Not all O(log N) are made the same

• boost::flat_map vs the node-based std::map

© 2016 Codeplay Software Ltd. 12

Inconsistent Allocation Patterns
• Container implementation differences

• Does an empty container allocate?
• Vector growth rate and initial capacity?
• Small string and small object optimizations?

• What size functor will require std::function to allocate?
• Behavior is unpredictable when porting between platforms and

C++ implementations

© 2016 Codeplay Software Ltd. 13

Implementation Details
• std::async uses a thread pool?
• Standard library features often re-implemented

• EASTL (Electronic Arts’ implementation)
• STLport (based on SGI’s implementation)
• folly::FBVector (Facebook’s custom std::vector)
• llvm/ADT (LLVM’s custom containers)

© 2016 Codeplay Software Ltd. 14

Traditionally Costly Features
• RTTI

• Excessive data generated by eg. dynamic_cast

• Virtual functions
• Less important these days, but still worth noting

• Poor inlining
• C++ abstractions not always as free as we are taught to believe

• Exceptions
• Restrict some optimizations for unwinding

© 2016 Codeplay Software Ltd. 15

Exceptions & RTTI
• Games often use -fno-exceptions and -fno-rtti

• Some important platforms don’t support exceptions reliably or at all

• Behavior of try/throw/dynamic_cast not defined when
disabled

• Usually results in a compile error making many libraries unusable without
modification

• Not just a games thing or a niche concern
• http://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
• https://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Exceptions

http://llvm.org/docs/CodingStandards.html�
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html�
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html�

© 2016 Codeplay Software Ltd. 16

Memory budgets
●Content creator and production focus

○ Artists, designers, distribution/publishing/QA
○ Let them answer questions of memory budget on their own (programmers’ time

is expensive and precious)

●Capture memory stats in the middle of a 3-hour test session
without expensive or slow instrumentation

●Need finely-grained accounting and budgeting

© 2016 Codeplay Software Ltd. 17

Allocation Interfaces
• Standard allocator usage is rare in games

• Interface is non-ideal
• Built-in accounting support for distinct memory regions

• Custom allocators with an innate knowledge of alignment
• Global new and delete on many platforms not aligned for SIMD

• Simpler interface for custom allocators, of which we have many
• C++11 was a big improvement on this item, at least, though not perfect
• Rebinding for node-based allocators is crazy
• Allocator has no reason to know what it’s allocating

• Even if the allocator has strict size or alignment limits

© 2016 Codeplay Software Ltd. 18

Performance
• Some hardware has terrible no branch prediction
• Cache locality increasingly critical
• Small inefficiencies permittable in desktop software

unacceptable for us
• Performance matters even when debugging
• Memory usage and performance are tightly coupled
• Need algorithms and data structure designed for real hardware

• Pure math is great and never changes, but hardware certainly does

© 2016 Codeplay Software Ltd. 19

Some missing algorithms
●Radix sort

○ Integer keys are king
○ Very efficient CPU comparison
○ Trumps std::sort

● Spatial and geometric algorithms
● Imprecise but faster alternatives for math algorithms

© 2016 Codeplay Software Ltd. 20

Some missing containers
● Intrusive linked list container

○ Fewer allocations and static initialization
○ No “self iterators”

●Cache-friendly hash table
●Contiguous containers
● Stack containers

© 2016 Codeplay Software Ltd. 21

Bounded worst case time, why we use C++
instead of C#, JAVA, or D

●Worst case time vs average case time
○ In general, steady 30fps > jittery 60fps
○ Especially important for VR (jitter = nausea)

●Note: garbage collection trade-off

Time

GC

Ref counting

Game Stutters Higher throughput, higher latency

Lower throughput, lower latency

© 2016 Codeplay Software Ltd. 22

Long Compilation Times

• Template/include bloat
• std::unique_ptr/std::array vs C pointer/array
• <memory> over 2 KLOC in VC14 (+ dependencies)

• “C with classes”-style code compiles much faster

• File I/O, complex grammar, template instantiation,
optimizations

• Modules to the rescue?

https://xkcd.com/303/

© 2016 Codeplay Software Ltd. 23

Precision of screen coordinates
(not actual precision, just example visualization)

floating point

fixed point

Fixed-point Numbers
• Effort led by Lawrence Crowl and John McFarlane

• Overlap with SG6 “Numerics”
• P0037R0 Fixed point real numbers LEWG SG14/SG6 (McFarlane)Baker
• N3352 “C++ Binary Fixed-Point Arithmetic“ (Crowl)

• Example uses:
• Platforms slow at floating point (eg: no FPU present)
• Uniform precision (as opposed to float’s varying precision)

• Proposed:
• std::fixed_point<Repr,Exponent>
• std::make_fixed<IntegerBits, FractionBits>

• Approved in SG14; Awaiting SG6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html�

© 2016 Codeplay Software Ltd. 24

• Effort led by Guy Davidson
• P0059R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael

• Contiguous FIFO buffer
• Examples uses:

• Feeding audio samples to a DAC
• Queuing up network packets to be sent
• Buffering frames of video

• Approved in SG14, LEWG,
• proceeding to wording

Linked List (Discontinuous)

Ring Buffer (Contiguous)

Ring Buffer

1 2 3 4

producer

consumer

2
3

4

producer

consumer

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�

© 2016 Codeplay Software Ltd. 25

“Flat” Associative Containers
• Effort led by Sean Middleditch

• P0038R0 Flat Containers Sean Middleditch LEWG SG14: Patrice Roy

• Cache-friendly associative containers
• Binary search in sorted contiguous memory
• Similar to std::lower_bound but with associative container interface

• Approved in SG14, LEWG

3 4 6 7 9
6

7

9

3 4

Flat Set (Contiguous)

std::set (Node Based)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�

© 2016 Codeplay Software Ltd. 26

SG14 Financial/Trading major interest thrusts
• Massively parallel dispatch

to Heterogeneous devices
• Accelerators
• FPGA

• CPU/cache/memory
affinity/HBM

• Composable Memory
allocation

• Exception Handling Lite

• SG14 meeting
after London STAC
May 11

• SG14 meeting
after Chicago
STAC May 18

© 2016 Codeplay Software Ltd. 27

• Intrusive containers
• Interprocess Communication
• Array View
• Node-based Allocators
• String conversions
• hot set/hot set, likely/unlikely,

frequency
• vector and matrix
• Executors

• 3 ways: low-latency, parallel loops,
server task dispatch

• Atomic views
• Coroutines
• SIMD/Vector support

• Ring that minimizes contention
• Non-allocating containers
• Small vectors that enable storing

non-movable types
(atomic.mutex)

• Networking
• openGL/Vulkan
• Read/write Contention attribute
• More precise time/date support
• Lock-free types/queues

SG14 HFT/Finance/Trading meeting future
proposals

27

© 2016 Codeplay Software Ltd. 28

@codeplaysoft codeplay.com

info@codeplay.co
m

	Slide Number 1
	Acknowledgement and Disclaimer
	Legal Disclaimer
	Codeplay: world expert in Heterogeneous software platform for self-driving cars, AI/machine learning/neural networks, computer vision, data centres, graphics, mobile devices, with Open Standards
	Among the top users of C++!
	The Breaking Wave: N4456
	Formation of SG14
	Slide Number 8
	Audience of SG14 Goals and Scopes
	Memory Usage
	Computation Time
	Inconsistent Allocation Patterns
	Implementation Details
	Traditionally Costly Features
	Exceptions & RTTI
	Memory budgets
	Allocation Interfaces
	Performance
	Some missing algorithms
	Some missing containers
	Bounded worst case time, why we use C++ instead of C#, JAVA, or D
	Long Compilation Times
	Fixed-point Numbers
	Ring Buffer
	“Flat” Associative Containers
	SG14 Financial/Trading major interest thrusts
	SG14 HFT/Finance/Trading meeting future proposals
	Slide Number 28
	Slide Number 29

