® codeplay®
The Birth and future of SG14 Low latency for HFT
Michael Wong

Codeplay Software, VP of Research and Development

ISOCPP.org Director, VP
Head of Delegation for C++ Standard for Canada

Vice Chair of Programming Languages for Standards Council of Canada
Past OpenMP CEO: http://openmp.org/wp/about-openmp/

Chair of WG21 SG5 Transactional Memory: https://groups.google.com/a/isocpp.org/forum/?hl=en&fromgroups#!forum/tm
Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded:

Editor: C++ SG5 Transactional Memory Technical Specification
Editor: C++ SG1 Concurrency Technical Specification

http:://wongmichael.com/about

New York STAC 2016

http://isocpp.org/wiki/faq/wg21�
https://groups.google.com/a/isocpp.org/forum/?fromgroups�

Acknowledgement and Disclaimer

. Numerous people internal and external to the
original C++/Khronos/OpenCL/SYCL group, In
Industry and academia, have made contributions,
Influenced iIdeas, written part of this presentations,
and offered feedbacks to form part of this talk.

. Jeven lifted this acknowledgement and disclaimer
from some of them.

. But | claim all credit for errors, and stupid mistakes.
These are mine, all mine!

® codeplay’ © 2016 Codeplay Software Ltd.

Legal Disclaimer

. This work represents the view of the author and

does not necessarily represent the view of Codeplay,
IBM, Khronos, OpenMP, or ISOCPP.org.

. Other company, product, and service names may be
trademarks or service marks of others.

his Is part of an ongoing keynote presentation for
upcoming C/C++ Standard status modified as C and
C++ changes. Please attribute credit accordingly.

® codeplay’ © 2016 Codeplay Software Ltd.

GROUP
CONNECTING SOFTWARE TO SILICON

International
Iso Organization for
SN, 28 | Standardization

THE

Cr

PROGRAMMING LANGUAGE

Major
Corporation

QUALCOMM l WI SONY. l

Codeplay: world expert in Heterogeneous software platform for self-driving cars,
Al/machine learning/neural networks, computer vision, data centres, graphics,

mobile devices, with Open Standards

Algorithms

|

P ComputeSuite

WVtiican.
®
Ll -

O\

Software/Middleware
Tools & layers to Standards

Processors IP
CPU, GPU, DSP, VPU, ViSP)

C ComputeCpp
A ComputeAorta
V' ComputeVisionCpp

Semiconductors

0 Module Integration
u \ /
OpenVX. ¥ Tensor [|s: 26262.] ISO C99/11 or C++
11/14/17/20 compliant

® codeplay’

Movidius % I Silicon Egé{réjA ‘\(Hxﬂﬂﬁﬁ .[Hi@aueﬁmm EUTE:Hanl

3, || s fl aMDZ AR L lgggsll

© 2016 Codeplay Software Ltd.

Among the top users of C++!

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

® codeplay’ © 2016 Codeplay Software Ltd.

The Breaking Wave: N4456

CppCon 2014

C++ committee panel leads to impromptu
COIN, game developer meeting.

Google Group created.

Discussions have outstanding industry
participation.

N4456 authored and published!

International Towards improved support for games,
Organization for N4456 graphics, real-time, low latency, -\ /-
Standardization embedded systems

© 2016 Codeplay Software Ltd.

Formation of SG14

N4456 presented at Spring 2015
S Standards Committee Meeting in Lenexa.
T Very well received!

Formation of Study Group 14:
Low Latency
Games/Financial/Trading/Simulation
+Embedded Devices
Chair: Michael Wong

SG14 past meetings:
e CppCon 2015
e GDC 2016
e London STAC SG14 Neil Horlock
e Chicago STAC SG14 Tom Rodgers/Nevin Liber

SG14 future meetings:

e New York STAC: today %

e Amsterdam HFT SG14 Optiver: June 27
e CPPCON 2016: Sept 21
®

® codeplay’

Meeting C++ Games Track: Nov 18/19 © 2016 Codeplay Software Ltd.

: : ISO/IEC JTC 1 () (F)DIS Approval
WG21 Organization
5C 22 (Prog. Langs) CD & PDTS Approval

WG21 - C++ Committee Internal Approval
Core WG Library WG Wording & Consistency

Evolution WG Lib Evolution WG Design & Target (IS/TS)

SG1 SG2 NCE!

Concurrency Modules Filesystem

SG4
Networking Tx. Memory Domain Specific

SG6 SG7 SG8 SG9 $G10 Investigation &
Numerics Reflection Concepts Ranges Feature Test Development
ek G12 SG13 5G14
Databases U. Behavior ?&TE&S; c?tl

SG5

® codeplay’ © 2016 Cod22lyy Softwa-2 Ltc.

Audience of SG14 Goals and Scopes

Simulation and
Training Software

Video Games

Finance/Trading

Embedded
Systems/Automotive

Memory Usage

e Fixed memory budgets
e 100’s of MB to a couple GB

e Shared CPU/GPU memory

e 100’s of MB in texture data, animations, framebuffers...

 No swap space and no temporary disk scratch space

e Upgrading hardware isn’t an option

e Users may not even have the option (eg: game consoles)

® codeplay’ © 2016 Codeplay Software Ltd.

Computation Time

e Cost of debug iterators in vendor libraries

e Many game engines replace even std::vector
e Each implementation has a different magic incantation to turn off unwanted
“features”

e dynamic_cast versus home-grown reflection systems

 Not all O(log N) are made the same
e boost::flat map vsthe node-based std: :map

® codeplay’ © 2016 Codeplay Software Ltd.

Inconsistent Allocation Patterns

e Container implementation differences

e Does an empty container allocate?
e Vector growth rate and initial capacity?
e Small string and small object optimizations?

 What size functor will require std: : function to allocate?

e Behavior is unpredictable when porting between platforms and
C++ implementations

® codeplay’ © 2016 Codeplay Software Ltd.

Implementation Details

e std: :async uses a thread pool?

e Standard library features often re-implemented

e EASTL (Electronic Arts’ implementation)

e STlLport (based on SGI’'s implementation)

e folly: :FBVector (Facebook’s custom std: :vector)
e |lvm/ADT (LLVM’s custom containers)

® codeplay’ © 2016 Codeplay Software Ltd.

Traditionally Costly Features

e RTTI

e Excessive data generated by eg. dynamic_cast

e Virtual functions

e Less important these days, but still worth noting
e Poorinlining
e (C++ abstractions not always as free as we are taught to believe

e Exceptions

e Restrict some optimizations for unwinding

® codeplay’ © 2016 Codeplay Software Ltd.

Exceptions & RTTI

e Games often use -fno-exceptions and -fno-rtti

e Some important platforms don’t support exceptions reliably or at all

e Behavior of try/throw/dynamic cast not defined when
disabled

e Usually results in a compile error making many libraries unusable without
modification

 Not just a games thing or a niche concern

e http://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
e https://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Exceptions

® codeplay’ © 2016 Codeplay Software Ltd.

http://llvm.org/docs/CodingStandards.html�
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html�
https://google-styleguide.googlecode.com/svn/trunk/cppguide.html�

Memory budgets

e Content creator and production focus

o Artists, designers, distribution/publishing/QA
o Let them answer questions of memory budget on their own (programmers’ time
is expensive and precious)

e Capture memory stats in the middle of a 3-hour test session
without expensive or slow instrumentation

e Need finely-grained accounting and budgeting

® codeplay’ © 2016 Codeplay Software Ltd.

Allocation Interfaces

e Standard allocator usage is rare in games

e |nterface is non-ideal
e Built-in accounting support for distinct memory regions

e Custom allocators with an innate knowledge of alignment

e Global new and delete on many platforms not aligned for SIMD

e Simpler interface for custom allocators, of which we have many

e C++11 was a big improvement on this item, at least, though not perfect
e Rebinding for node-based allocators is crazy
e Allocator has no reason to know what it’s allocating

e Even if the allocator has strict size or alignment limits

® codeplay’ 17 © 2016 Codeplay Software Ltd.

Performance

e Some hardware has terribte no branch prediction
e Cache locality increasingly critical

 Small inefficiencies permittable in desktop software
unacceptable for us

e Performance matters even when debugging
e Memory usage and performance are tightly coupled

 Need algorithms and data structure designed for real hardware

e Pure math is great and never changes, but hardware certainly does

® codeplay’ © 2016 Codeplay Software Ltd.

Some missing algorithms

® Radix sort

o Integer keys are king
o Very efficient CPU comparison
o Trumps std: :sort

® Spatial and geometric algorithms

® [mprecise but faster alternatives for math algorithms

® codeplay’ © 2016 Codeplay Software Ltd.

Some missing containers

® Intrusive linked list container

o Fewer allocations and static initialization
o No “self iterators”

e Cache-friendly hash table
® Contiguous containers

® Stack containers

® codeplay’ © 2016 Codeplay Software Ltd.

Bounded worst case time, why we use C++
instead of C#, JAVA, or D

® \Worst case time vs average case time

o In general, steady 30fps > jittery 60fps
o Especially important for VR (jitter = nausea)

e Note: garbage collection trade-off

GC _ Higher throughput, higher latency

Ref counting I I I I I I I Lower throughput, lower latency

® codeplay’ © 2016 Codeplay Software Ltd.

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.

Long Compilation Times

HEY! GET BACK
TO WORK!

.

e Template/include bloat

 std::unique ptr/std: :array vs C pointer/array
e <memory> over 2 KLOC in VC14 (+ dependencies)

OH. CARRY ON.

e “C with classes”-style code compiles much faster

e File I/O, complex grammar, template instantiation,
optimizations

e Modules to the rescue?

® codeplay’ © 2016 Codeplay Software Ltd.

- ; /recision of screen coordinates
I: I Xe d - p O I nt N u m b e riot actual precision, just example visualization)

e Effort led by Lawrence Crowl and John McFarlane floating point

e Qverlap with SG6 “Numerics”
PO037RO0 Fixed point real numbers LEWG SG14/SG6 (I\/IcFa rIane)Ba ker
e N3352 “C++ Binary Fixed-Point Arithmetic” (Crowl)

e Example uses:

* Platforms slow at floating point (eg: no FPU present) fixed point
e Uniform precision (as opposed to float’s varying precision

e Proposed:

e std::fixed point<Repr,Exponent>
e std::make_ fixed<IntegerBits, FractionBits>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html�

Ring Buffer

e Effort led by Guy Davidson

PO0O59R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael

e Contiguous FIFO buffer ~
Ring Buffer (Contiguous) producer
e Examples uses: \VZ
1|2]|3]|4
e Feeding audio samples to a DAC 74y
e Queuing up network packets to be sent consumer
e Buffering frames of video - J
o Approved in SG14, LEWG, (I_inked List (Discontinuous) A
producer
e proceeding to wording 2 4
3
%
consumer

® codeplay’ © 2016 Codeplay Software Ltd.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0059r0.pdf�

“Flat” Associative Containers

e Effort led by Sean Middleditch

PO038RO Flat Containers Sean Middleditch LEWG SG14: Patrice Roy

Cache-friendly associative containers

e Binary search in sorted contiguous memory
e Similarto std: : lower bound but with associative container interface

° Approved iﬂ 5614' LEWG /std::set (Node Based) \

\
Flat Set (Contiguous) /
/\
6 9
3 4 6 7 9 —

® codeplay’ © 2016 Codeplay Software Ltd.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html�

SG14 Financial/Trading major interest thrusts

- * Massively parallel dispatch
®
>G14 meet ng to Heterogeneous devices

after London STAC « Accelerators

* FPGA
May 11 e CPU/cache/memory
: affinity/HBM
*5G14 mgetlng * Composable Memory
after Chicago allocation

STAC I\/Iay 18 * Exception Handling Lite

® codeplay’ © 2016 Codeplay Software Ltd.

SG14 HFT/Finance/Trading meeting future

proposals

* Intrusive containers * Ring that minimizes contention
* Interprocess Communication * Non-allocating containers
* Array View » Small vectors that enable storing
e Node-based Allocators ble t
* String conversions NON-Movabie types
* hot set/hot set, likely/unlikely, (atomic.mutex)

frequency e Networking
e vector and matrix
e Executors ¢ OpenGl_/VU”(an

e 3 ways: low-latency, parallel loops,

server task dispatch * Read/write Contention attribute

* Atomic views » More precise time/date support
e (Coroutines
1D 1pport e Lock-free types/queues

® codeplay’ © 2016 Codeplay Software Ltd.

__WORLD _
WARGHIPS

'

) W INGHET
@v\.mﬁmh 5

@codeplaysoft

@® codeplay”’

THE HETEROGENEOUS SYSTEMS EXPERTS

info@codeplay.co
m

codeplay.com

	Slide Number 1
	Acknowledgement and Disclaimer
	Legal Disclaimer
	Codeplay: world expert in Heterogeneous software platform for self-driving cars, AI/machine learning/neural networks, computer vision, data centres, graphics, mobile devices, with Open Standards
	Among the top users of C++!
	The Breaking Wave: N4456
	Formation of SG14
	Slide Number 8
	Audience of SG14 Goals and Scopes
	Memory Usage
	Computation Time
	Inconsistent Allocation Patterns
	Implementation Details
	Traditionally Costly Features
	Exceptions & RTTI
	Memory budgets
	Allocation Interfaces
	Performance
	Some missing algorithms
	Some missing containers
	Bounded worst case time, why we use C++ instead of C#, JAVA, or D
	Long Compilation Times
	Fixed-point Numbers
	Ring Buffer
	“Flat” Associative Containers
	SG14 Financial/Trading major interest thrusts
	SG14 HFT/Finance/Trading meeting future proposals
	Slide Number 28
	Slide Number 29

