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Legal Disclaimer
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Among the top users of C++!

http://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/

® codeplay’ © 2016 Codeplay Software Ltd.




The Breaking Wave: N4456

CppCon 2014

C++ committee panel leads to impromptu
COIN, game developer meeting.

Google Group created.

Discussions have outstanding industry
participation.

N4456 authored and published!

International Towards improved support for games,
Organization for N4456 graphics, real-time, low latency, -\ /-
Standardization embedded systems

© 2016 Codeplay Software Ltd.



Formation of SG14

N4456 presented at Spring 2015
S Standards Committee Meeting in Lenexa.
T Very well received!

Formation of Study Group 14:
Low Latency
Games/Financial/Trading/Simulation
+Embedded Devices
Chair: Michael Wong

SG14 past meetings:
e CppCon 2015
e GDC 2016
e London STAC SG14 Neil Horlock
e Chicago STAC SG14 Tom Rodgers/Nevin Liber

SG14 future meetings:

e New York STAC: today %

e Amsterdam HFT SG14 Optiver: June 27
e CPPCON 2016: Sept 21
®
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Audience of SG14 Goals and Scopes

Simulation and
Training Software

Video Games

Finance/Trading

Embedded
Systems/Automotive




Memory Usage

e Fixed memory budgets
e 100’s of MB to a couple GB

e Shared CPU/GPU memory

e 100’s of MB in texture data, animations, framebuffers...

 No swap space and no temporary disk scratch space

e Upgrading hardware isn’t an option

e Users may not even have the option (eg: game consoles)
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Computation Time

e Cost of debug iterators in vendor libraries

e Many game engines replace even std::vector
e Each implementation has a different magic incantation to turn off unwanted
“features”

e dynamic_cast versus home-grown reflection systems

 Not all O(log N) are made the same
e boost::flat map vsthe node-based std: :map
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Inconsistent Allocation Patterns

e Container implementation differences

e Does an empty container allocate?
e Vector growth rate and initial capacity?
e Small string and small object optimizations?

 What size functor will require std: : function to allocate?

e Behavior is unpredictable when porting between platforms and
C++ implementations
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Implementation Details

e std: :async uses a thread pool?

e Standard library features often re-implemented

e EASTL (Electronic Arts’ implementation)

e STlLport (based on SGI’'s implementation)

e folly: :FBVector (Facebook’s custom std: :vector)
e |lvm/ADT (LLVM’s custom containers)
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Traditionally Costly Features

e RTTI

e Excessive data generated by eg. dynamic_cast

e Virtual functions

e Less important these days, but still worth noting
e Poorinlining
e (C++ abstractions not always as free as we are taught to believe

e Exceptions

e Restrict some optimizations for unwinding
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Exceptions & RTTI

e Games often use -fno-exceptions and -fno-rtti

e Some important platforms don’t support exceptions reliably or at all

e Behavior of try/throw/dynamic cast not defined when
disabled

e Usually results in a compile error making many libraries unusable without
modification

 Not just a games thing or a niche concern

e http://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
e https://google-styleguide.googlecode.com/svn/trunk/cppguide.html#Exceptions
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Memory budgets

e Content creator and production focus

o Artists, designers, distribution/publishing/QA
o Let them answer questions of memory budget on their own (programmers’ time
is expensive and precious)

e Capture memory stats in the middle of a 3-hour test session
without expensive or slow instrumentation

e Need finely-grained accounting and budgeting
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Allocation Interfaces

e Standard allocator usage is rare in games

e |nterface is non-ideal
e Built-in accounting support for distinct memory regions

e Custom allocators with an innate knowledge of alignment

e Global new and delete on many platforms not aligned for SIMD

e Simpler interface for custom allocators, of which we have many

e C++11 was a big improvement on this item, at least, though not perfect
e Rebinding for node-based allocators is crazy
e Allocator has no reason to know what it’s allocating

e Even if the allocator has strict size or alignment limits
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Performance

e Some hardware has terribte no branch prediction
e Cache locality increasingly critical

 Small inefficiencies permittable in desktop software
unacceptable for us

e Performance matters even when debugging
e Memory usage and performance are tightly coupled

 Need algorithms and data structure designed for real hardware

e Pure math is great and never changes, but hardware certainly does
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Some missing algorithms

® Radix sort

o Integer keys are king
o Very efficient CPU comparison
o Trumps std: :sort

® Spatial and geometric algorithms

® [mprecise but faster alternatives for math algorithms
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Some missing containers

® Intrusive linked list container

o Fewer allocations and static initialization
o No “self iterators”

e Cache-friendly hash table
® Contiguous containers

® Stack containers
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Bounded worst case time, why we use C++
instead of C#, JAVA, or D

® \Worst case time vs average case time

o In general, steady 30fps > jittery 60fps
o Especially important for VR (jitter = nausea)

e Note: garbage collection trade-off

GC _ Higher throughput, higher latency

Ref counting I I I I I I I Lower throughput, lower latency
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THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.

Long Compilation Times

HEY! GET BACK
TO WORK!

.

e Template/include bloat

 std::unique ptr/std: :array vs C pointer/array
e <memory> over 2 KLOC in VC14 (+ dependencies)

OH. CARRY ON.

e “C with classes”-style code compiles much faster

e File I/O, complex grammar, template instantiation,
optimizations

e Modules to the rescue?
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- ; /recision of screen coordinates
I: I Xe d - p O I nt N u m b e riot actual precision, just example visualization)

e Effort led by Lawrence Crowl and John McFarlane floating point

e Qverlap with SG6 “Numerics”
PO037RO0 Fixed point real numbers LEWG SG14/SG6 (I\/IcFa rIane)Ba ker
e N3352 “C++ Binary Fixed-Point Arithmetic” (Crowl)

e Example uses:

* Platforms slow at floating point (eg: no FPU present) fixed point
e Uniform precision (as opposed to float’s varying precision

e Proposed:

e std::fixed point<Repr,Exponent>
e std::make_ fixed<IntegerBits, FractionBits>



http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0037r0.html�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3352.html�

Ring Buffer

e Effort led by Guy Davidson

PO0O59R0 Add rings to the Standard Library Guy Davidson LEWG SG14: Michael

e Contiguous FIFO buffer ~
Ring Buffer (Contiguous) producer
e Examples uses: \VZ
1|2 ]|3]|4
e Feeding audio samples to a DAC 74y
e Queuing up network packets to be sent consumer
e Buffering frames of video - J
o Approved in SG14, LEWG, (I_inked List (Discontinuous) A
producer
e proceeding to wording 2 4
3
%
consumer
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“Flat” Associative Containers

e Effort led by Sean Middleditch

PO038RO Flat Containers Sean Middleditch LEWG SG14: Patrice Roy

Cache-friendly associative containers

e Binary search in sorted contiguous memory
e Similarto std: : lower bound but with associative container interface

° Approved iﬂ 5614' LEWG /std::set (Node Based) \

\
Flat Set (Contiguous) /
/\
6 9
3 4 6 7 9 —
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SG14 Financial/Trading major interest thrusts

- * Massively parallel dispatch
®
>G14 meet ng to Heterogeneous devices

after London STAC « Accelerators

* FPGA
May 11 e CPU/cache/memory
: affinity/HBM
*5G14 mgetlng * Composable Memory
after Chicago allocation

STAC I\/Iay 18 * Exception Handling Lite
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SG14 HFT/Finance/Trading meeting future

proposals

* Intrusive containers * Ring that minimizes contention
* Interprocess Communication * Non-allocating containers
* Array View » Small vectors that enable storing
e Node-based Allocators ble t
* String conversions NON-Movabie types
* hot set/hot set, likely/unlikely, (atomic.mutex)

frequency e Networking
e vector and matrix
e Executors ¢ OpenGl_/VU”(an

e 3 ways: low-latency, parallel loops,

server task dispatch * Read/write Contention attribute

* Atomic views » More precise time/date support
e (Coroutines
1D 1pport e Lock-free types/queues
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