

"ML Oops": How data simulation can help your quants avoid modeling errors

Michel Debiche Director of Analytics Research, STAC

michel.debiche@STACresearch.com

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

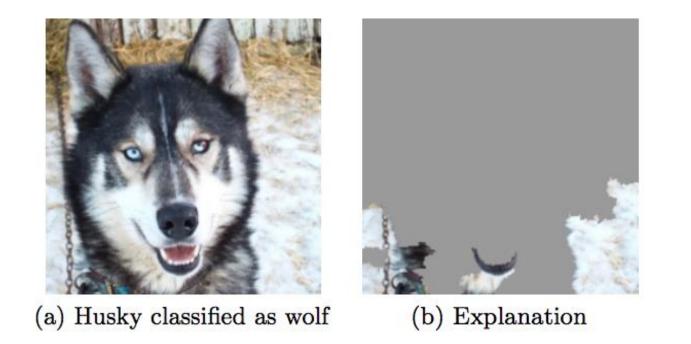
Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

arXiv:1602.04938v3 [cs.LG] 9 Aug 2016

Husky or wolf?

Source of this slide: Alexiei Dingly, <u>https://becominghuman.ai/its-magic-i-owe-you-no-explanation-explainableai-43e798273a08</u>

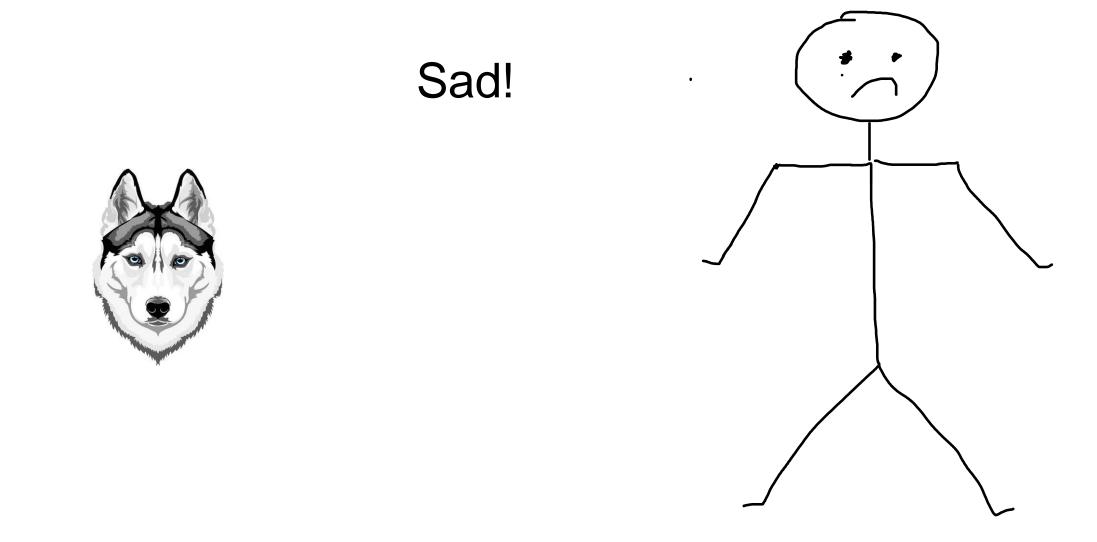
Model explanation: snow!



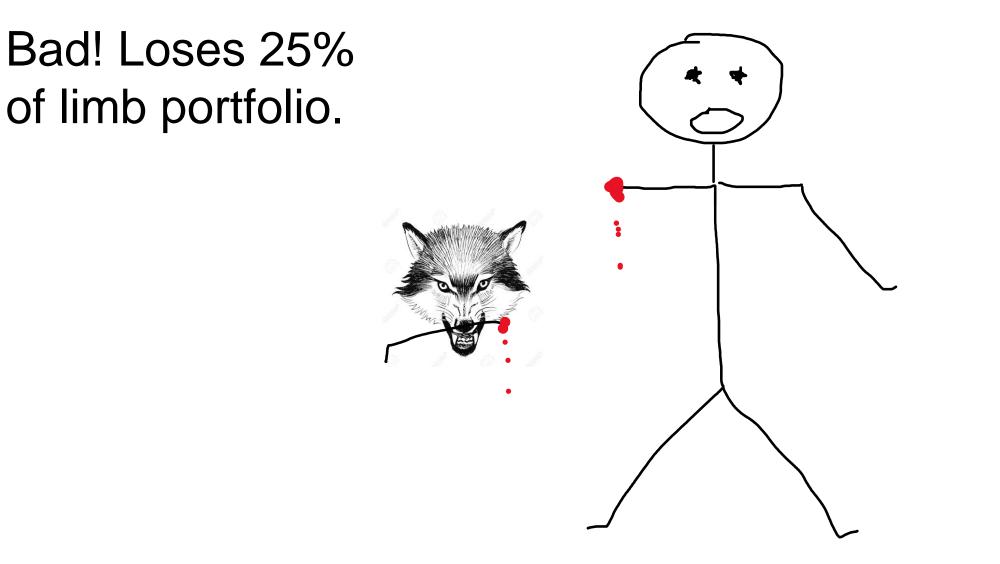
Symmetric errors vs. asymmetric risk

Husky or Wolf?

Says wolf instead of Husky \rightarrow Opportunity cost (avoids Husky)

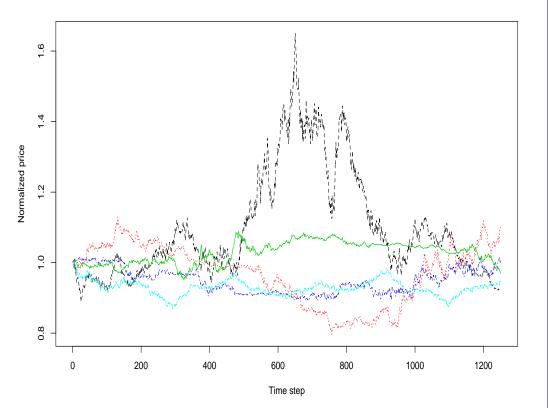


Says Husky instead of wolf \rightarrow Realized loss (tries to pet wolf)

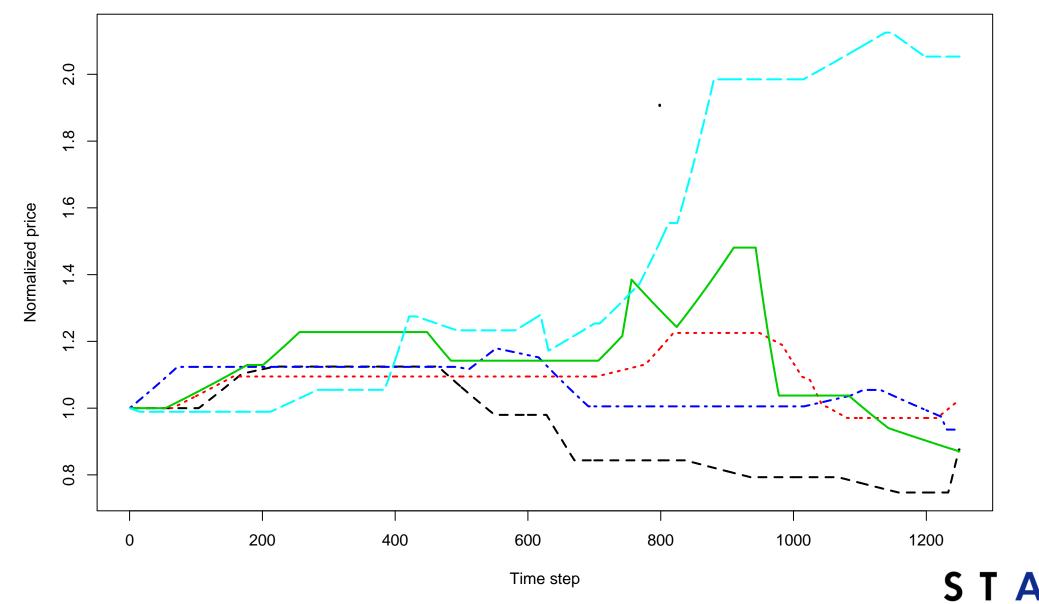


Exploring multivariate time series models

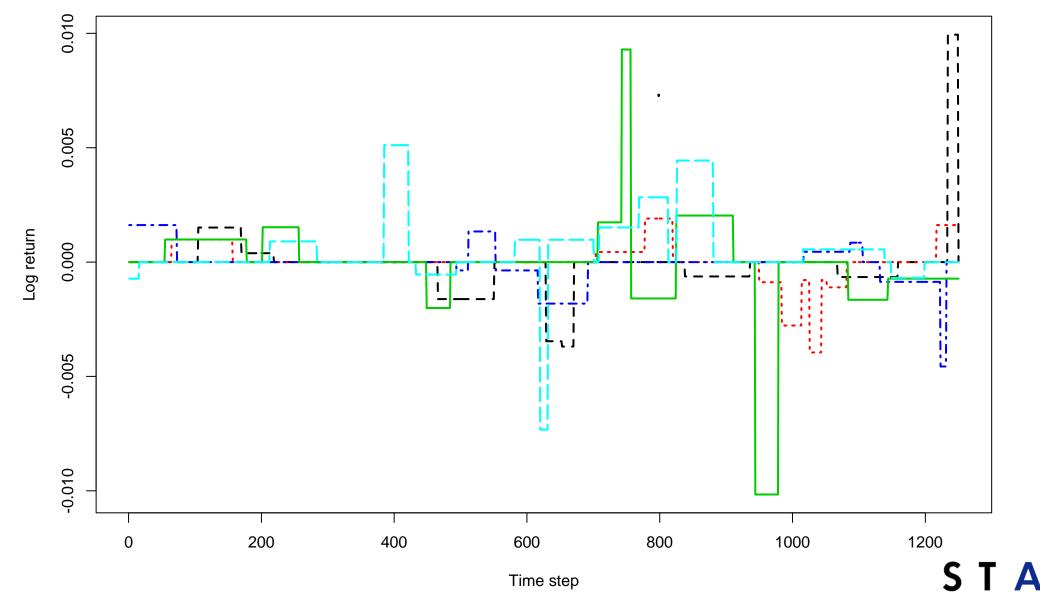
- What would be the equivalent to "seeing" only the snow in multivariate time series?
- We will explore multivariate time series modeling using simulated data
- Goals:
 - Appreciate what is involved in trying to "explain" such models
 - Understand the potential of using simulated data to understand and test models of all kinds



Generated signals (normalized price paths)

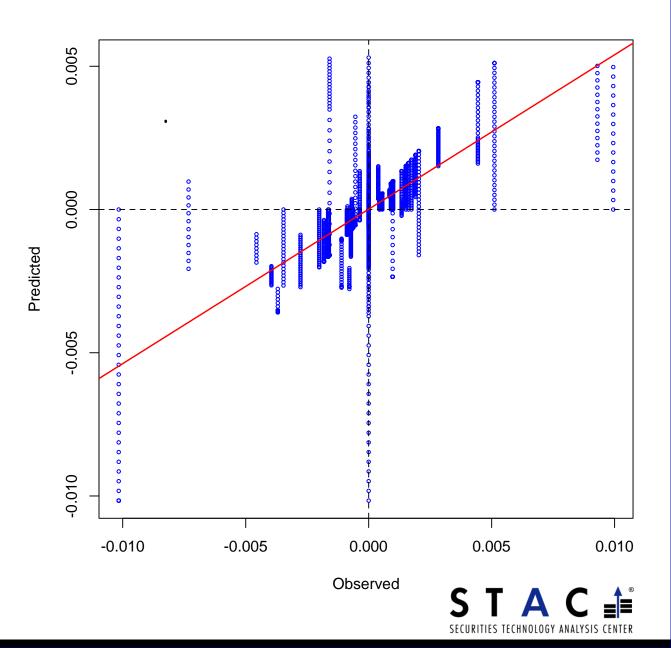


Generated signals (log returns)

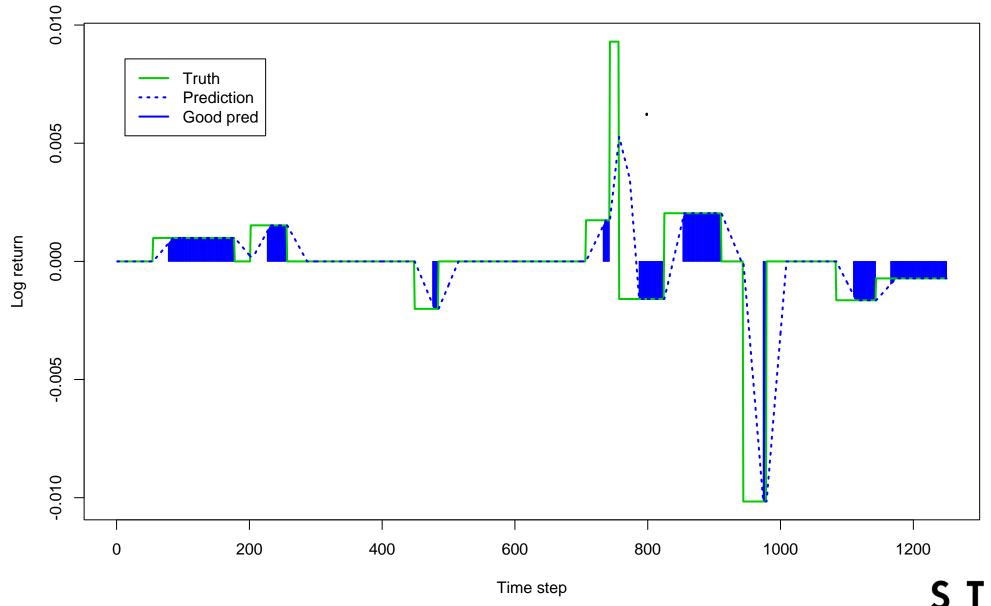


A very simple model

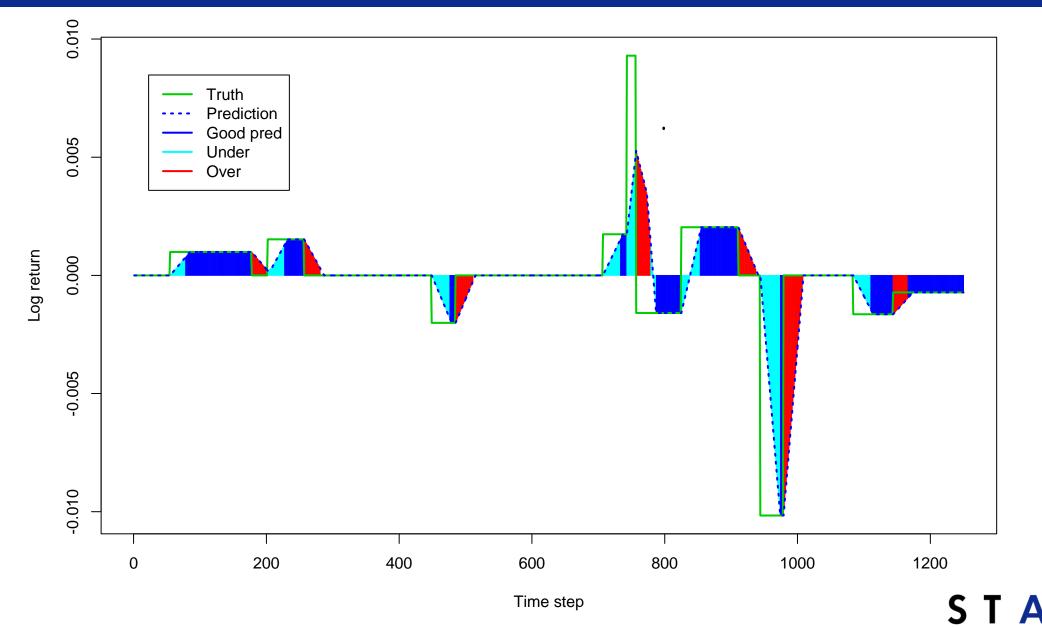
- Predicted value = average of last 30 values
- Regress predicted value vs. observed value at next time step
- R-squared for these generated signals is 46%



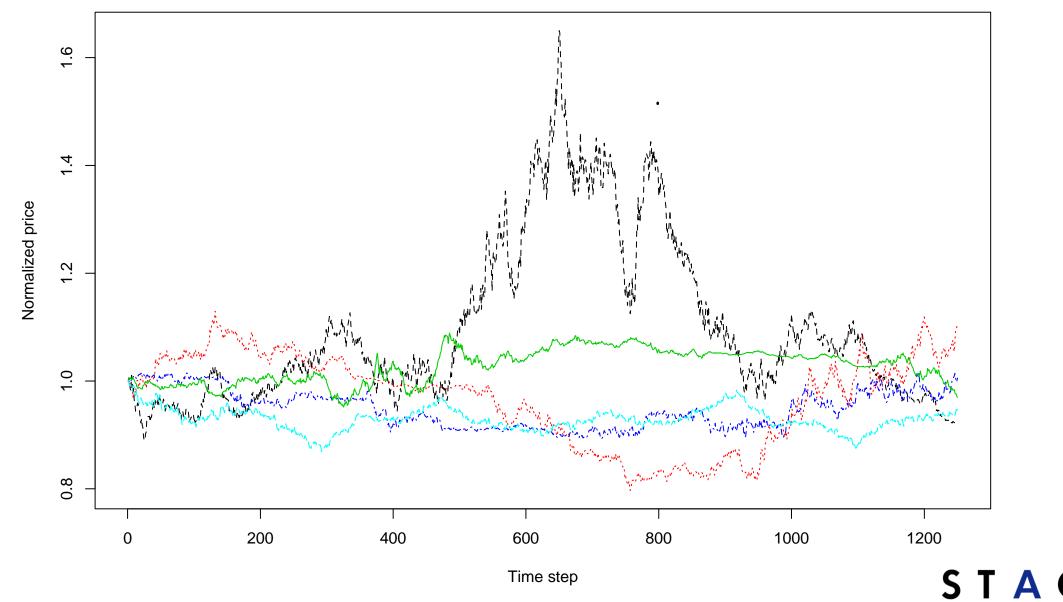
Generated signal vs. model predictions



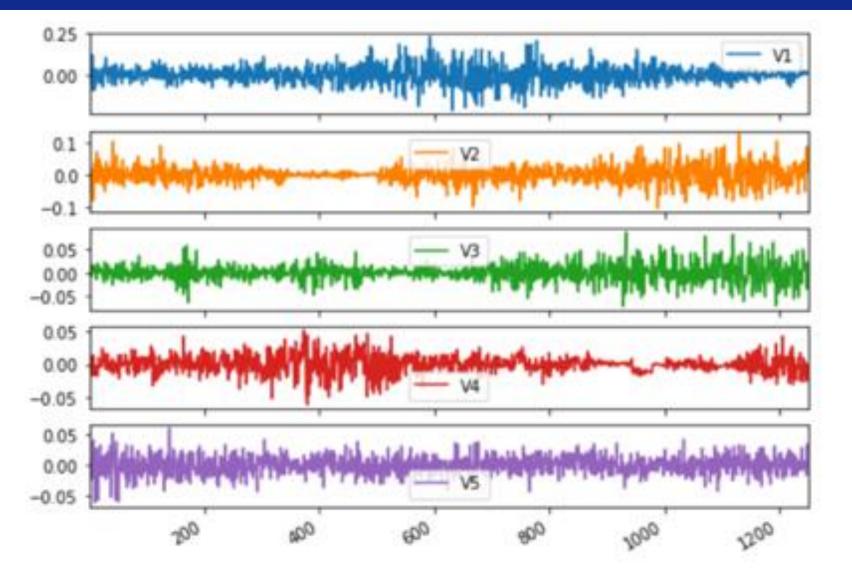
Generated signal vs. model predictions (cont'd)



Generated noise (normalized price paths)

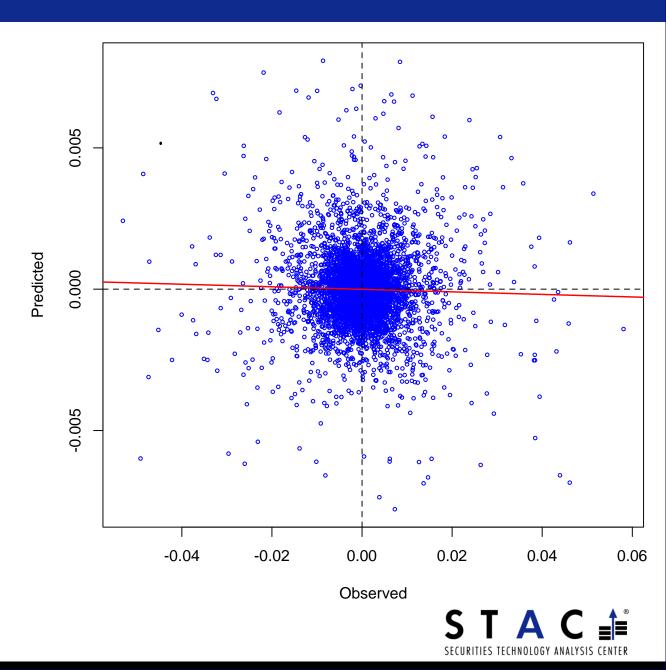


Generated noise (log returns)

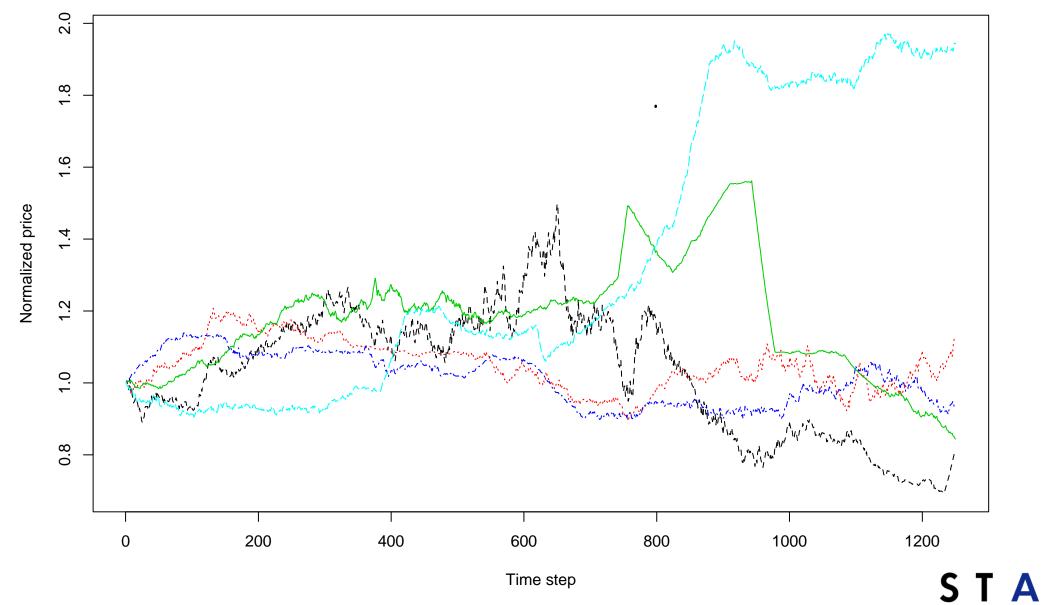


Try to model the noise

- R-squared is only 0.07%
- Yes, it's noise!

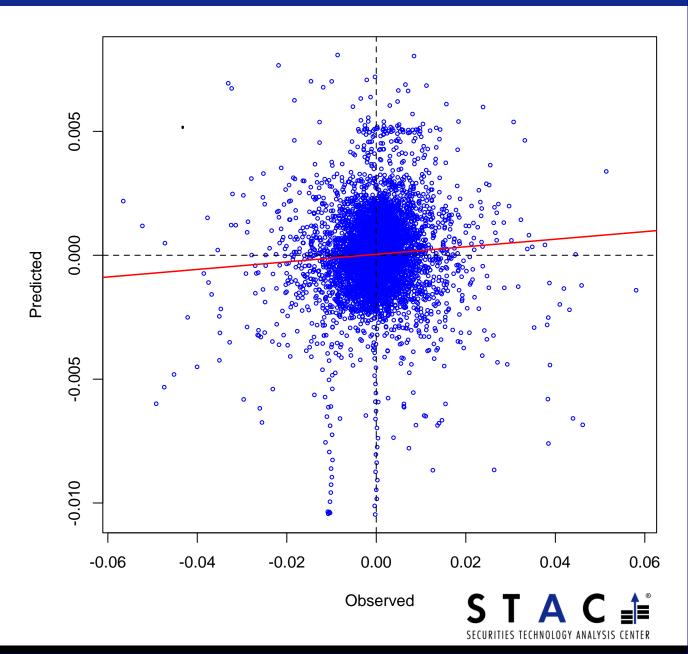


Simulated data (signal + noise)

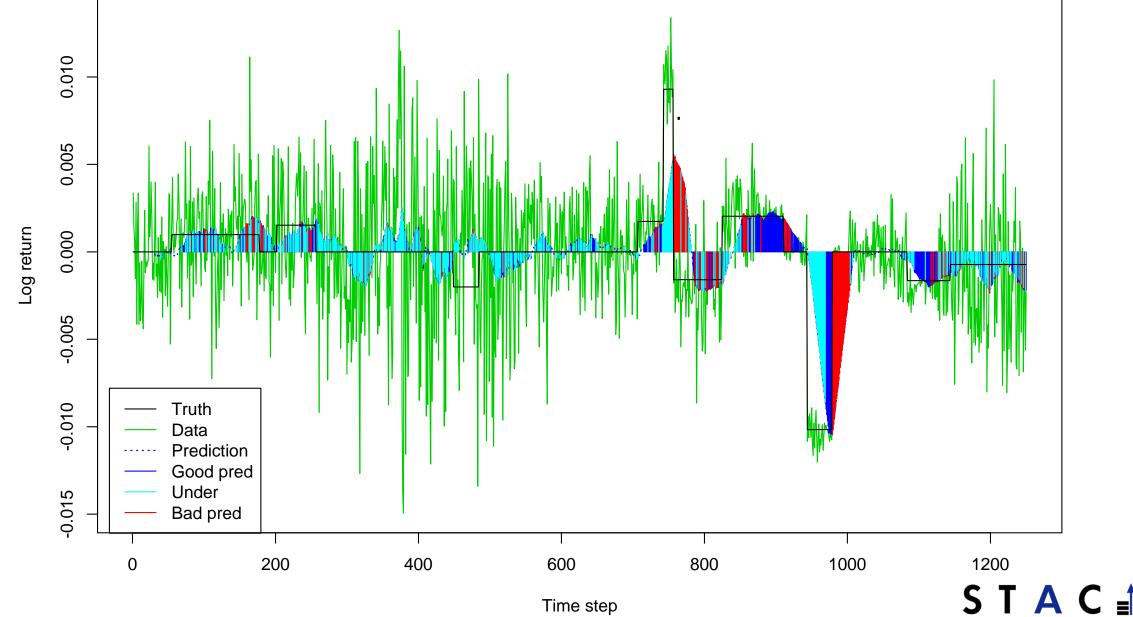


Model the simulated data

- R-squared is 0.45%
- The fit is statistically significant



Truth, noisy data and predictions



Some ways to tempt or torture models with simulated data

- Bull market -> overfitting to random patterns (superstition)
- Single dominant symbol
 - E.g. Signal in one symbol, only noise in others -> how many false positives?
- Time window with perfect correlation across variables (proxy for market crash)
- Symbols with scaling errors
- Symbols with all zeros
- Time windows with all zeros
- All variables driven by correlated multifactor model + noise
- Non-linear signals (e.g. jump up or down + rebound)

Challenges in explaining multivariate time series models

- Features typically include functions of sliding windows
- Features from overlapping windows are not independent
- Features may be correlated
- For dense data, number of features rises rapidly
- General methods exist for trying to assess the importance of features in models
- These require extensive computation or extensive manipulation of data or both
- The explanation methods themselves have to be tested (for example, with simulated data)
- Results may be hard to display or visualize

Conclusions

- Simulating data provides insights into both data and models
 - Variations on signal type, distribution, density, strength and continuity highlight sensitivities and vulnerabilities of the model
 - Likewise for attributes of background market "noise"
- Models should be *routinely* tested against signal and noise patterns known to be challenging
 - This should be built into operational architectures
- Explaining opaque models such as Deep Learning is active research, but:
 - Business, compliance, regulators will require it
 - Will need to be built into operational architectures as well
 - Will most likely require enormous resources (compute, memory and/or I/O)
 - These workloads may behave differently from both training and inference
 - May require data simulators to test the explainers
- Data can be generated in interesting ways; e.g. multiple agents

