

STAC Update: Big workloads

Peter Lankford Founder and Director, STAC

peter.lankford@STACresearch.com

STAC-A2

- Non-trivial Monte Carlo
 - Heston-based Greeks for multi-asset, path-dependent options with early exercise
 - Metrics: Speed, capacity, quality, efficiency
- Numerous reports
 - Some public, some in the STAC Vault
- Premium STAC members get:
 - Reports in STAC Vault
 - Detailed config info on public and private reports
 - Code from vendor implementations of the benchmarks

www.STACresearch.com/a2

Dell cluster using Intel Omni-Path Architecture and Intel MPI

- SUT ID: INTC181012
- Intel Parallel Studio XE 2018 Update 3, including Intel TBB and Intel MPI
- 2 x Dell EMC PowerEdge C6400 chassis with [4 x PowerEdge C6420 server sleds with (2 x 28-core Intel Xeon Platinum 8176F CPU)]
- Dell Networking H1048-OPF switch
 - Intel Omni-Path Architecture

Report coming soon

Dell cluster using Intel Omni-Path Architecture and Intel MPI

- Total SUT rack units: 4.2U
 - 4U for servers
 - 1/5 of 1U OPA switch
- 448 total cores, 1.5 TB total DRAM
- Operated as single unit of compute
 - Cluster cooperated on computation of single problems
- Intel's objectives with this project:
 - Maximize throughput and efficiency
 - Keep base response times low

Throughput and efficiency

- Highest throughput of any solution (STAC-A2.β2.HPORTFOLIO.SPEED)
 - 56% higher than the best throughput from a solution using GPUs (SUT ID NVDA171020)
- Highest space efficiency of any solution (STAC-A2.β2.HPORTFOLIO. SPACE_EFF)
 - 36% higher than SUT ID NVDA171020
- 91% higher energy efficiency than the previous best Intel-only solution (SUT ID INTC170503)
 - Only 30% less energy efficiency than SUT ID NVDA171020

Response times

- Fastest WARM time in the large problem size (STAC-A2.β2.10-100K-1260.TIME.WARM)
 - 2.5x the speed of SUT ID NVDA171020
- Fastest COLD time in the large problem size (STAC-A2.β2.10-100K-1260.TIME.COLD)
 - 63% faster than SUT ID NVDA171020
- Largest basket size achieved (STAC-A2.β2.GREEKS.MAX_ASSETS)
- WARM runs of baseline GREEKS (STAC-A2.β2.GREEKS.TIME.WARM): same order of magnitude as SUT ID NVDA171020
 - 34 milliseconds for this SUT, 21 milliseconds for NVDA171020

8 x NVIDIA Volta (V100) in HPE ProLiant XL270d Gen10 Server

- SUT ID: NVDA181105
- Update of SUT ID NVDA171020
- SUT:
 - STAC-A2 Pack for CUDA (Rev D)
 - NVIDIA CUDA 9.2
 - 8 x NVIDIA Volta V100 GPUs
 - 2 x Intel Xeon Gold 6150 @ 2.7GHz
 - HPE ProLiant XL270d Gen10
 - 768 GB DRAM
 - RHEL 7.5

STAC Report coming soon

Compared to all publicly reported solutions

- Fastest warm time in baseline Greeks
 - STAC-A2.β2.GREEKS.TIME.WARM
 - 80% faster than the best result from a non-NVIDIA-based solution (SUT ID INTC181012)
- Highest maximum paths
 - STAC-A2.β2.GREEKS.MAX_PATHS
 - 48% higher than the best result from a solution based solely on standard CPUs (INTC150811)
- 43% higher energy efficiency than the best non-NVIDIA-based solution (SUT ID INTC181012)
 - STAC-A2.β2.HPORTFOLIO.ENERG_EFF

STAC Report coming soon

Compared to all publicly reported single server solutions

- Highest throughput
 - STAC-A2.β2.HPORTFOLIO.SPEED
- Fastest warm and cold times in the large problem size
 - STAC-A2.β2.10-100K-1260.TIME.WARM
 - STAC-A2.β2.10-100K-1260.TIME.COLD
- Largest basket size
 - STAC-A2.β2.GREEKS.MAX_ASSETS

STAC Report coming soon

STAC-M3

- Performance benchmarks for enterprise tick analytics
 - Language/DBMS neutral
 - Developed by banks and hedge funds
- Workload:
 - Synthetic data modeled on NYSE TAQ
 - Mix of I/O- and compute-intensive operations (read-heavy)
 - Scalable volume and number of users

STAC-M3 Shasta / kdb+ / Google Cloud n1-Ultramem-160

- SUT ID: KDB180713
- Stack:
 - Software: kdb+ 3.5 / CentOS 7.5
 - Instance: GCP n1-Ultramem-160 (160 vCPU, 3.97 TB DRAM)
 - Storage: Google Persistent SSD (but data pre-loaded into memory)
- Point of STAC-M3 Shasta
 - Assess real-world performance when using a relatively small database

SECURITIES TECHNOLOGY ANALYSIS CENTER

www.STACresearch.com/KDB180713

STAC-M3 Shasta / kdb+ / GCP n1-Ultramem-160

- Results highlights:
 - Outperformed bare metal solution based on Broadwell EX and 6TB DRAM (SUT ID KDB160425) in 8 of the 15 required benchmarks.
 - Outperformed bare metal solution based on Ivy Bridge EX and 6TB DRAM (SUT ID KDB140116) in 14 of the 15 required benchmarks.
 - In 5 of these, the GCP solution was more than 2x the speed

STAC-M3 / kdb+ / GCP Cluster with Persistent SSD

- SUT ID: KDB181001
- Stack:
 - Software: kdb+ 3.6 / CentOS 7.5 / xfs
 - 13 instances, each with 32vCPU, 128GB DRAM
 - Storage: Google Persistent SSD
- STAC-M3 Antuco and Kanaga
 - Baseline and scale tests

Reports coming soon

Copyright © 2018 Securities Technology Analysis Center LLC

Compared to a Lustre-based on-prem cluster (KDB150528)

• Baseline (Antuco) results:

- GCP-based solution outperformed in 14 of the 17 required benchmarks
- From 1.3x to 7.8x speedup
- Scale (Kanaga) results:
 - GCP-based solution outperformed in 16 of 16 benchmarks reported for KDB150528*
 - From 1.6x to 12.6x speedup

* KDB150528 operated on only 4 years of data. For that dataset size, the Kanaga suite has 16 benchmarks. The GCP solution operated on 5 years of data, which results in 24 benchmarks.

STAC-M3 / kdb+ / Lenovo SR950 / 3D+NAND + a little Optane

- SUT ID: KDB181009
- Stack:
 - kdb+ 3.5
 - Lenovo ThinkSystem SR950
 - 4 x Intel Xeon Platinum 8180 CPUs
 - 3TB DRAM
 - 6TB Intel DC P4800X (Optane) SSDs
 - 56TB Intel DC P4510 (3D NAND) SSDs
 - Patches for Spectre & Meltdown
- STAC-M3 Antuco and Kanaga
 - Baseline tests and scale tests

www.STACresearch.com/KDB181009

Results

- Set records in all scales of the market snapshot benchmark
 - STAC-M3.β1.10T.YR[n]-MKTSNAP.TIME
 - Year 5: 58% faster than the next best result
 - Year 4: 46% faster than the next best result
 - Year 3: 20% faster than the next best result
 - Year 2: 13% faster than the next best result
- Set a new record in the 50-user 12-day VWAB in Year 1
 - STAC-M3.β1.50T.YR1VWAB-12D-HO.TIME
 - 40% faster than the next best result

www.STACresearch.com/KDB181009

STAC-M3 Working Group – Important meeting(s) coming up

- How to assess price performance with deployed infra & laaS?
- How to assess price performance with DBaaS & FaaS ("serverless")?
- Is the set of STAC-M3 operations still representative?
- Should we make the scale tests part of the baseline?
- Should we have a STAC-M3 "teaser suite" for quick-and-dirty evaluation of emerging databases?

STAC-A3

- Recap:
 - Workloads that emulate real-world backtesting jobs
 - Measure speed, scalability, efficiency of any architecture
- Test harness hands the implementation jobs to execute
- Measures the throughput and efficiency of the SUT
- Currently defined algos are almost always bottlenecked on I/O

STAC-A3 Working Group – Important meeting(s) coming up

- Clarifying and streamlining the benchmark results set for SWEEP
 - Making it easier to do apples-to-apples comparisons
- Confirming benchmarks for SWEEP using options
- Confirming benchmarks for BLASH algorithm
- Defining portfolio optimization algorithm

Refresh: STAC Cloud SIG

- Subgroup to guide dialog and research on common issues
- Public, private, hybrid cloud
- Several financial firms
 - Banks, hedge funds, prop shops (soon asset managers)
 - Can have more
- Several vendors
 - Major players in private/public/hybrid cloud ecosystems are involved
 - Look for announcements soon on additional vendors

STAC Cloud SIG way forward

- <u>Cloud</u>-specific issues will be in Cloud SIG meetings
 - For example, will be setting up Q&As with each of the big 3 public cloud providers on security
- For <u>workload</u>-specific issues, Cloud SIG needs representation on domain working groups to provide input/ensure consistency. E.g.:
 - How to apply pricing to use cases
 - Dealing with conditions (regions, time of day, day of week) and performance variability
- For example, STAC-M3 WG will drive STAC-M3 priceperformance but needs insights from cloud experts

To get involved

Click the "Enable me" button at

www.STACresearch.com/cloudsig

Copyright © 2018 Securities Technology Analysis Center LLC