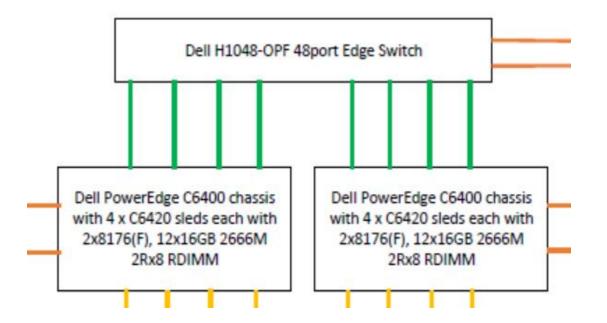


STAC Update: Big workloads

Peter Lankford Founder and Director, STAC

peter.lankford@STACresearch.com

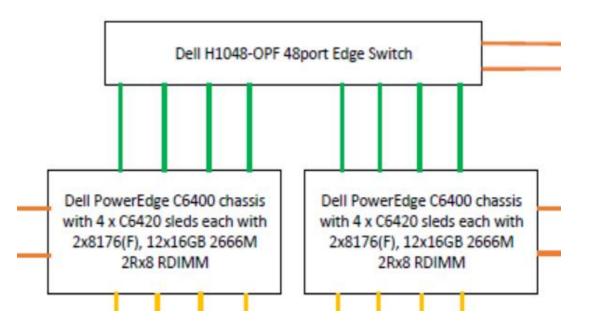
STAC-A2


- Non-trivial Monte Carlo
 - Heston-based Greeks for multi-asset, path-dependent options with early exercise
 - Metrics: Speed, capacity, quality, efficiency
- Numerous reports
 - Some public, some in the STAC Vault
- Premium STAC members get:
 - Reports in STAC Vault
 - Detailed config info on public and private reports
 - Code from vendor implementations of the benchmarks

www.STACresearch.com/a2

Dell cluster using Intel Omni-Path Architecture and Intel MPI

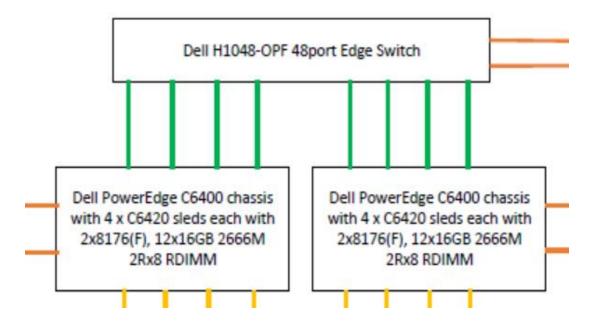
- SUT ID: INTC181012
- Intel Parallel Studio XE 2018 Update 3, including Intel TBB and Intel MPI
- 2 x Dell EMC PowerEdge C6400 chassis with [4 x PowerEdge C6420 server sleds with (2 x 28-core Intel Xeon Platinum 8176F CPU)]
- Dell Networking H1048-OPF switch
 - Intel Omni-Path Architecture



Report coming soon

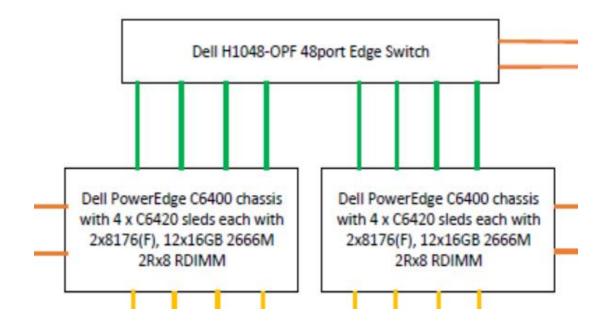
Dell cluster using Intel Omni-Path Architecture and Intel MPI

- Total SUT rack units: 4.2U
 - 4U for servers
 - 1/5 of 1U OPA switch
- 448 total cores, 1.5 TB total DRAM
- Operated as single unit of compute
 - Cluster cooperated on computation of single problems
- Intel's objectives with this project:
 - Maximize throughput and efficiency
 - Keep base response times low



Throughput and efficiency

- Highest throughput of any solution (STAC-A2.β2.HPORTFOLIO.SPEED)
 - 56% higher than the best throughput from a solution using GPUs (SUT ID NVDA171020)
- Highest space efficiency of any solution (STAC-A2.β2.HPORTFOLIO. SPACE_EFF)
 - 36% higher than SUT ID NVDA171020
- 86% higher energy efficiency than the previous best Intel-only solution (SUT ID INTC170503)
 - Only 32% less energy efficiency than SUT ID NVDA171020



Response times

- Fastest WARM time in the large problem size (STAC-A2.β2.10-100K-1260.TIME.WARM)
 - 2.5x the speed of SUT ID NVDA171020
- Fastest COLD time in the large problem size (STAC-A2.β2.10-100K-1260.TIME.COLD)
 - 63% faster than SUT ID NVDA171020
- Largest basket size achieved (STAC-A2.β2.GREEKS.MAX_ASSETS)
- WARM runs of baseline GREEKS (STAC-A2.β2.GREEKS.TIME.WARM): same order of magnitude as SUT ID NVDA171020
 - 34 milliseconds for this SUT, 21 milliseconds for NVDA171020

SECURITIES TECHNOLOGY ANALYSIS CENTER

STAC-M3

- Performance benchmarks for enterprise tick analytics
 - Language/DBMS neutral
 - Developed by banks and hedge funds
- Workload:
 - Synthetic data modeled on NYSE TAQ
 - Mix of I/O- and compute-intensive operations (read-heavy)
 - Scalable volume and number of users

STAC-M3 Shasta / kdb+ / Google Cloud n1-Ultramem-160

- SUT ID: KDB180713
- Stack:
 - Software: kdb+ 3.5 / CentOS 7.5
 - Instance: GCP n1-Ultramem-160 (160 vCPU, 3.97 TB DRAM)
 - Storage: Google Persistent SSD (but data pre-loaded into memory)
- Point of STAC-M3 Shasta
 - Assess real-world performance when using a relatively small database

www.STACresearch.com/KDB180713

STAC-M3 Shasta / kdb+ / Google Cloud n1-Ultramem-160

- Results highlights:
 - Outperformed bare metal solution based on Broadwell EX and 6TB DRAM (SUT ID KDB160425) in 8 of the 15 required benchmarks.
 - Outperformed bare metal solution based on Ivy Bridge EX and 6TB DRAM (SUT ID KDB140116) in 14 of the 15 required benchmarks.
 - In 5 of these, the GCP solution was more than 2x the speed

STAC-M3 Working Group – Important meeting(s) coming up

- Is the set of STAC-M3 operations still representative?
- Should we make the scale tests part of the baseline?
- Should we have a STAC-M3 "teaser suite" for quick-and-dirty evaluation of emerging databases?
- How to assess price performance with deployed infra & laaS?
- How to assess price performance with DBaaS & FaaS ("serverless")?

STAC Cloud SIG

- Issues are bifurcating
- Cloud-specific issues like security
 - Upcoming vendor briefings
- Workload-specific issues like price-performance
- For workload-specific issues, need consistent principles for cloud
 - How to apply pricing to use cases
 - Dealing with conditions (regions, time of day, day of week) and performance variability
- Cloud SIG needs representation on each domain working group