DEEP LEARNING AT SCALE
WITH PYTORCH

() WHAT IS PYTORCH?

() WHAT IS PYTORCH?

DYNAMIC HARDWARE
NEURAL ACCELERATED
NETWORKS INFERENCE

EAGER & DISTRIBUTED SIMPLICITY
GRAPH-BASED TRAINING OVER
EXECUTION COMPLEXITY

PYTORCH

RESEARCH PRODUCTION
PROTOTYPING DEPLOYMENT

CORE PRINCIPLES

CORE PRINCIPLES

@ Ll

DEVELOPER BUILDING
EFFICIENCY FOR SCALE

> @

DEVELOPER EFFICIENCY

ENABLING A HIGH VELOCITY OF MODEL
ITERATION AND INNOVATION

C
> @

TENSORBOARD

Embedding Projector

DATA) | Points: 10000 | Dimension: 200
f
5 tensors found
Word2Vec 10K v Search
Label by
word v
Color by
No color map v

Sphereize data @

Load data Publish
Checkpoint: Demo datasets

Metadata: oss_data/word2vec_10000_200d_
labels.tsv

T-SNE PCA CUSTOM

Component #1 ~ Component #2 ~

Component #3

PCA is approximate. @

Total variance described: 8.5%. BOOKMARKS (0) @

C
> @

TENSORBOARD

Embedding Projector

DATA) | Points: 10000 | Dimension: 200
f
5 tensors found
Word2Vec 10K v Search
Label by
word v
Color by
No color map v

Sphereize data @

Load data Publish
Checkpoint: Demo datasets

Metadata: oss_data/word2vec_10000_200d_
labels.tsv

T-SNE PCA CUSTOM

Component #1 ~ Component #2 ~

Component #3

PCA is approximate. @

Total variance described: 8.5%. BOOKMARKS (0) @

O

(® Captum

MODEL INTERPRETABILITY LIBRARY FOR PYTORCH

MULTIMODAL

Predicted

Blue (0.517)

What - are the cats eyes?

EXTENSIBLE

class MyAttribution (Attribution):

def attribute(self, input, ...):

attributions = self._ compute attrs(input, ...)
<Add any logic necessary for attribution>

return attributions

EASY TO USE

visualize_image_attr(attr_algo.attribute(input), ...

Original Image Attribution Magnitude

this movie s B , just B . Someone bought it for me as a christmas present because they knew i liked a good horror flick . i
do n't think they understood the " good " part . all i can say is next year this person is getting slipper socks from me . [avoid this
movie- it makes you bitter . peace.
<br / >

NAMED TENSOR

Data has semantic meaning!

But we force users to drop that context and use an abstract
“Tensor” mathematical object

Data has semantic meaning!

But we force users to drop that context and use an abstract
“Tensor” mathematical object

Key Insight: Named Dimensions

Today we name and access dimensions by comment

Tensor[N, C, H, W]

images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)

Key Insight: Named Dimensions

Today we name and access dimensions by comment But naming explicitly leads to more readable and maintainable

code
Tensor[N, C, H, W]

images = torch.randn(32, 3, 56, 56) images = torch.randn(N=32, C=3, H=56, W=56)
images.sum(dim=1)

images.sum('C")
images.select(dim=1, index=0) images.select('C', 0)

O

Accidental Alignment

No 1->N broadcast occurs across semantically distinct
dimensions, but size happens to match.

image: [N, C, H, W]
mean: [C]
stdv: [C]
def normalize_image(image, mean, stdv):
return image.sub_(mean[:, None, Nonel)
.div_(stdv[:, None, Nonel)

O

Accidental Alignment

No 1->N broadcasting occurs across semantically distinct
dimensions, but size happens to match.

image: [N, C, H, W]
mean: [C]
stdv: [C]
def normalize_image(image, mean, stdv):
return image.sub_(mean[:, None, Nonel)
.div_(stdv[:, None, Nonel)

But there are so many formats!

O

Accidental Alignment

No 1->N broadcasting occurs across semantically distinct
dimensions, but size happens to match.

image: [N, C, H, W]
mean: [C]
stdv: [C]
def normalize_image(image, mean, stdv):
return image.sub_(mean[:, None, Nonel)
.div_(stdv[:, None, Nonel)

But there are so many formats!

There is a “time bomb” if | ever normalize the wrong format
and the “unaligned” dimensions have the same size!

O

Accidental Alignment

No 1->N broadcasting occurs across semantically distinct
dimensions, but size happens to match.

image: [N, C, H, W]
mean: [C]
stdv: [C]
def normalize_image(image, mean, stdv):
return image.sub_(mean[:, None, Nonel)
.div_(stdv[:, None, Nonel)

O

Accidental Alignment

No 1->N broadcasting occurs across semantically distinct
dimensions, but size happens to match.

image: [N, C, H, W]
mean: [C]
stdv: [C]
def normalize_image(image, mean, stdv):
return image.sub_(mean[:, None, Nonel)
.div_(stdv[:, None, Nonel)

If we broadcast by name (align_as), we only need a single
normalize function for all formats

normalize(t: [..., C, ...],
mean: [C],

stdv: [C]):
return t.sub_(mean.align_as(t))
.div_(stdv.align_as(t))

Named Tensors

Experimental in 1.3

Core Functionality

Common torch operators are
supported in eager mode

(Unnamed) autograd is supported

Tutorial

See our in-depth
MultiheadedAttention tutorial

Future Work

Expanded Coverage

R
"

Expanded NN package coverage
Named autograd support

Serialization, multiprocessing,
distributed, JIT, mypy

CORE PRINCIPLES

Q)

CORE PRINCIPLES

@ Ll

DEVELOPER BUILDING
EFFICIENCY FOR SCALE

BUILDING FOR

' l SCALE
) . HIGH PERFORMANCE EXECUTION FOR

MODEL TRAINING AND INFERENCE

OPTIMIZING FOR HARDWARE BACKENDS

OPTIMIZING FOR HARDWARE BACKENDS

PYTORCH JIT

MKL-DNN Cuda/CuDNN

(QNNPACK FBGEMM
XLA Glow TVM

_|
%
O
al
al
D
N
D
al
_l
O
)
O
_
)

3

.

N PYTORCH 1

com/pytorch/xla

thub.

gl

O

TPU PODS SPEEDUP RESNETS50
TRAINING WITH IMAGENET DATASET

SPEEDUP

V3-8 V3-32 V3-64 V3-128 V3-256

ACCELERATOR TYPE

O

AVAILABLE NOW:
PYTORCH + CLOUD TPUS IN COLAB

Experiment with PyTorch and Cloud TPUs for free,
right in your browser!

bit.ly/pytorch-tpu ‘ J I q b

O

QUANTIZATION

Can neural networks run in lower precision?
float16, int8

Supported by modern hardware
x86 CPU, ARM CPU, NVidia Volta & Turing,
Qualcomm DSP, ...

Maintaining accuracy is hard
Working approaches, ongoing research

N x float32

N x uint8

float32 int32

float_val = (uint8_val - zero_point) x scale

less memory

compute speedup

O

PYTORCH
QUANTIZATION

Ca

TURN-KEY WORKFLOWS

Dynamic quantization
Post training quantization
Quantization aware training

COMPONENTS FOR
TUNING & RESEARCH

Every part of the workflow is flexible
Use or build your own (in PyTorch)

CORE SUPPORT

Quantized tensor and operations
Optimized kernels for int8 on x86 and ARM
(other backends coming)

O

WORKFLOWS

Quantization

Dynamic Quantization weights only

Post Training Quantization weights and activations

Quantization-Aware Training weights and activations

Or build your own

Dataset Requirements

calibration

fine-tuning

Works Best For Accuracy

small batch

good
LSTMs and MLPs

all good

all best

O
bias

float
v

WORKFLOW : X . nngdlinear — Y
float float
DYNAMIC QUANTIZATION

How: one line AP # load or train your model
) : : R : model = WordLanguageModel()

What: quantize weights once, activations at runtime model.load_state_dict(torch.load("model.pt")

Good for: LSTMs and MLPs with small batch size

Savines: 2x f 4 I del si # quantize

avings: 2x faster compute, 4x smaller model size gmodel = quantize_dynamic(model,

dtype=torch.quint8)

use or deploy for C++ inference
output = gmodel(input)
torch.jit.script(gmodel).save("scripted.pt")

O

WORKFLOW:
POST TRAINING

How: tweak model, calibrate on data, convert
What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

CALIBRATE

Conv2d

QUANTIZE

bias
float
v

O

WORKFLOW:
POST TRAINING

How: tweak model, calibrate on data, convert
What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

load or train your model
model = ResNet50()
model.load_state_dict(torch.load("model.pt"))

tweak model for best results

change code directly or use manipulation APIs

model = quantization.fuse_modules(model,
["conv1", "bn1", “relu1"]])

print(model.conv)

ConvRelLU2d(3, 64, kernel_size=(7, 7), ...)

O

WORKFLOW:
POST TRAINING

How: tweak model, calibrate on data, convert
What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

specify which part to quantize and how

gmodel = quantization.prepare(model,
{"": quantization.default_qgconfig})

configurable!

collect calibration statistics

gmodel.eval()

for batch, target in data_loader:
model(batch)

print(model.conv)

ConvRelLU2d(3, 64, kernel_size=(7, 7), ...
(observer): MinMaxQObserver(
min_val=0.0, max_val=4.55)

)

O

WORKFLOW:
POST TRAINING

How: tweak model, calibrate on data, convert
What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

get the quantized model
gmodel = quantization.convert(gmodel)

print(model.conv1)
QuantizedConvRelLU2d(3, 64,

scale=0.035, zero_point=0,
kernel_size=(7, 7), ...)

O

WORKFLOW:
POST TRAINING

How: tweak model, calibrate on data, convert
What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

use or deploy for C++ inference
gmodel(input)
torch.jit.script(gmodel).save(“quantized.pt”)

O

PYTORCH AT CORE

Same framework, no conversion
« Same serialization
* Python or TorchScript

Eager at its core
 Most logic is in python
- Extensibility, debuggers, stack traces

Extensible AP

* New layers

* Observers

* Quantization techniques
« Partial quantization

torch.quantize_per_tensor

torch.quantize_per_channel

torch.nn.quantized.”

torch.nn.quantized.dynamic.*

torch.quantization.*
torch.quantization.Observer

torch.quantization.FakeQuant

O

EXAMPLE MODELS

fp32 accuracy

/6.1

Top-1, Imagenet

ResNet50

MobileNetV2 /1.9
Top-1, Imagenet

32.78

BLEU, IWSLT 2014 de-en

Translate / FairSeq

These models and more coming to TorchHub soon

int8 accuracy change

-0.2

759

-0.3

71.6

0.0

32.78

Technique

Post Training

Quantization-Aware
Training

Dynamic
(weights only)

CPU inference speed up

2X

214ms =>102ms,
Intel Skylake-DE

4x

75ms =>18ms
OnePlus 5, Snapdragon 835

4x

for encoder
Intel Skylake-SE

Not STAC Benchmarks

Peter Lankford
Typewritten Text
Not STAC Benchmarks

O

TRY IT NOW

EXPERIMENTAL IN 1.3

QUANTIZATION CORE
AND WORKFLOWS

Post training, dynamic and
quantization-aware training
x86 and ARM CPU Backends

Tell us what you think:
GitHub issues
discuss.pytorch.org #quantization

EXAMPLE MODELS

W

QUANTIZED MODELS AND
TUTORIALS TO OBTAIN THEM

ResNet-50
ResNeXt-10T
InceptionV3
MobileNetV2

.. more to come

COMING IN 1.4

MORE BACKENDS
AND JIT WORKFLOW

Simpler workflow for TorchScript
Expanding operator coverage

http://discuss.pytorch.org

CORE PRINCIPLES

CORE PRINCIPLES

@ Ll

DEVELOPER BUILDING
EFFICIENCY FOR SCALE

O

PRODUCTION
REQUIREMENTS

S

PORTABILITY

Models should run anywhere

PERFORMANCE

Whole-program optimization

O

PROBLEM STATEMENT —
WE NEED A SYSTEM THAT CAN:

] 2

CAPTURE THE STRUCTURE USE THAT STRUCTURE
OF PYTORCH PROGRAMS. TO OPTIMIZE.

O

PROBLEM STATEMENT —
WE NEED A SYSTEM THAT CAN:

1 2
CAPTURE THE STRUCTURE USE THAT STRUCTURE
OF PYTORCH PROGRAMS. TO OPTIMIZE.

TORCHSCRIPT JIT COMPILER

O

TORCHSCRIPT inport torch

class MyModule(torch.nn.Module):
def __init_ (self, N, M, state: List[Tensor]):

. . super(MyModule, self).__init_ ()
A static, high-performance subset self.weight = torch.nn.Parameter(torch.rand(N, M))

Of P_ythOﬂ self.state = state

forward(self, input):

. self.state.append(input)
1. Prototype your model with PyTorch if input.sum() > O:

2 Control flow is preserved output = self.weight.mv(input)
’ else:

3. First-class support for lists, dicts, etc. output = self.weight + input
return output

my_module = MyModule(3, 4, [torch.rand(3, 4)1)
my_script_module = torch.jit.script(my_module)

my_script_module.save("my_script_module.pt")

O

PYTORCH JIT

An optimizing just-in-time compiler
for PyTorch programs.

1. Lightweight, thread-safe interpreter
2. Easy to write custom transformations

3. Not just for inference! Autodiff support.

graph(sself : ClassType<MyModule>,

%input.l : Tensor):
16 : int = prim::Constant[value=1]()
: None = prim::Constant()
: int = prim::Constant[value=0]()
: Tensor[] = prim::GetAttr[name="state"] (%self)
: Tensor[] = aten::append(%2, %input.1)
: Tensor = aten::sum(%input.1l, %6)
: Tensor = aten::gt(%7, %8)
10 : bool = aten::Bool(%9)
%output : Tensor = prim::If(%10)
blocko():
%11 : Tensor = prim::GetAttr[name="weight"] (%self)
%output.1l : Tensor = aten::mv(%11l, %input.1)
-> (%output.1)
blockl1():
%14 : Tensor = prim::GetAttr[name="weight"](%self)
%output.2 : Tensor = aten::add(%14, %input.1, %16)
-> (%output.2)
return (%output)

O

WHAT’S NEXT?

JIT AS A PLATFORM

<73

QUANTIZATION

Model quantization done safely
and automatically using JIT
transformations.

— R

— v N

MOBILE BACKENDS

A lightweight interpreter that can Support for lowering models to static
run on-device. graph compilers, like TVM, Glow, XLA.

O

TRY IT

AND GIVE US FEEDBACK!

A [/ [

TUTORIALS DOCUMENTATION FEEDBACK

pytorch.org/tutorials TorchScript reference: ”jit” label on github:
https://pytorch.org/docs/master/jit.html https://github.com/pytorch/pytorch/issues?

Introduction to TorchScript: g=is%3Aissue+ish3Aopen+label%3Ajit

https://pytorch.org/tutorials/beginner/
Intro_to_TorchScript_tutorial.html

Loading a TorchScript model in C++:
https://pytorch.org/tutorials/advanced/
cpp_export.html

THANK YOU

