

DEEP LEARNING AT SCALE
WITH PYTORCH

JEFF SMITH
SENIOR ENGINEERING
MANAGER

() WHAT IS PYTORCH?

PYTORCH

RESEARCH PROTOTYPING PRODUCTION DEPLOYMENT

CORE PRINCIPLES

CORE PRINCIPLES

DEVELOPER EFFICIENCY

BUILDING FOR SCALE

DEVELOPER EFFICIENCY

ENABLING A HIGH VELOCITY OF MODEL ITERATION AND INNOVATION

TENSORBOARD

TENSORBOARD

MODEL INTERPRETABILITY LIBRARY FOR PYTORCH

MULTIMODAL

What color are the cats eyes?

Predicted

Blue (0.517)

EXTENSIBLE

```
class MyAttribution(Attribution):

   def attribute(self, input, ...):
     attributions = self._compute_attrs(input, ...)

# <Add any logic necessary for attribution>
     return attributions
```

EASY TO USE

visualize_image_attr(attr_algo.attribute(input), ...)

NAMED TENSORS

Data has semantic meaning!

But we force users to drop that context and use an abstract "Tensor" mathematical object

Data has semantic meaning!

But we force users to drop that context and use an abstract "Tensor" mathematical object

Key Insight: Named Dimensions

Today we name and access dimensions by comment

```
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)
```


Key Insight: Named Dimensions

Today we name and access dimensions by comment

```
# Tensor[N, C, H, W]
images = torch.randn(32, 3, 56, 56)
images.sum(dim=1)
images.select(dim=1, index=0)
```

But naming explicitly leads to more readable and maintainable code

```
images = torch.randn(N=32, C=3, H=56, W=56)
images.sum('C')
images.select('C', 0)
```


No 1->N broadcast occurs across semantically distinct dimensions, but size happens to match.

No 1->N broadcasting occurs across semantically distinct dimensions, but size happens to match.

But there are so many formats!

```
# PyTorch images: [N, C, H, W]
# PyTorch videos: [N, C, T, H, W]
# TF images: [N, H, W, C]
# PIL images: [H, W, C]
```


No 1->N broadcasting occurs across semantically distinct dimensions, but size happens to match.

But there are so many formats!

```
# PyTorch images: [N, C, H, W]
# PyTorch videos: [N, C, T, H, W]
# TF images: [N, H, W, C]
# PIL images: [H, W, C]
```

There is a "time bomb" if I ever normalize the wrong format and the "unaligned" dimensions have the same size!

No 1->N broadcasting occurs across semantically distinct dimensions, but size happens to match.

No 1->N broadcasting occurs across semantically distinct dimensions, but size happens to match.

If we broadcast by name (align_as), we only need a single normalize function for all formats

Named Tensors

Experimental in 1.3

Core Functionality

Common torch operators are supported in eager mode

(Unnamed) autograd is supported

Tutorial

See our in-depth

MultiheadedAttention tutorial

Future Work

Expanded Coverage

Expanded NN package coverage

Named autograd support

Serialization, multiprocessing, distributed, JIT, mypy

CORE PRINCIPLES

CORE PRINCIPLES

DEVELOPER EFFICIENCY

BUILDING FOR SCALE

BUILDING FOR SCALE

HIGH PERFORMANCE EXECUTION FOR MODEL TRAINING AND INFERENCE

OPTIMIZING FOR HARDWARE BACKENDS

OPTIMIZING FOR HARDWARE BACKENDS

PYTORCH DEVELOPMENT ENV

MKL-DNN Cuda/CuDNN

(Q)NNPACK FBGEMM

PYTORCH JIT

XLA Glow TVM

CLOUD TPU SUPPORT IN PYTORCH 1.3

github.com/pytorch/xla

TPU PODS SPEEDUP RESNET50 TRAINING WITH IMAGENET DATASET

ACCELERATOR TYPE

AVAILABLE NOW: PYTORCH + CLOUD TPUS IN COLAB

Experiment with PyTorch and Cloud TPUs for free, right in your browser!

bit.ly/pytorch-tpu

QUANTIZATION

QUANTIZATION

Can neural networks run in lower precision? float 16, int8

Supported by modern hardware x86 CPU, ARM CPU, NVidia Volta & Turing, Qualcomm DSP, ...

Maintaining accuracy is hard
Working approaches, ongoing research

PYTORCH QUANTIZATION

TURN-KEY WORKFLOWS

Dynamic quantization

Post training quantization

Quantization aware training

COMPONENTS FOR TUNING & RESEARCH

Every part of the workflow is flexible Use or build your own (in PyTorch)

CORE SUPPORT

Quantized tensor and operations

Optimized kernels for int8 on x86 and ARM

(other backends coming)

WORKFLOWS

	Quantization	Dataset Requirements	Works Best For	Accuracy
Dynamic Quantization	weights only		small batch LSTMs and MLPs	good
Post Training Quantization	weights and activations	calibration	all	good
Quantization-Aware Training	weights and activations	fine-tuning	all	best

Or build your own

WORKFLOW: DYNAMIC QUANTIZATION

How: one line API

What: quantize weights once, activations at runtime

Good for: LSTMs and MLPs with small batch size

Savings: 2x faster compute, 4x smaller model size

How: tweak model, calibrate on data, convert

What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

CALIBRATE

QUANTIZE

How: tweak model, calibrate on data, convert

What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

```
# load or train your model
model = ResNet50()
model.load_state_dict(torch.load("model.pt"))

# tweak model for best results
# change code directly or use manipulation APIs
model = quantization.fuse_modules(model,
    [["conv1", "bn1", "relu1"]])

print(model.conv1)

ConvReLU2d(3, 64, kernel_size=(7, 7), ...)
```


How: tweak model, calibrate on data, convert

What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

```
# load of trail your moder
model = ResNet50()
model.load_state_dict(torch.load("model.pt"))
# tweak model for best results
# change code directly or use manipulation APIs
model = quantization.fuse_modules(model,
 [["conv1", "bn1", "relu1"]])
# specify which part to quantize and how
qmodel = quantization.prepare(model,
  {"": quantization.default_qconfig})
# configurable!
# collect calibration statistics
qmodel.eval()
for batch, target in data_loader:
     model(batch)
print(model.conv1)
 ConvReLU2d(3, 64, kernel_size=(7, 7), ...
  (observer): MinMaxObserver(
   min_val=0.0, max_val=4.55)
```


How: tweak model, calibrate on data, convert

What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

```
qmodel = quantization.prepare(model,
  {"": quantization.default_qconfig})
# configurable!
# collect calibration statistics
qmodel.eval()
for batch, target in data_loader:
     model(batch)
# get the quantized model
qmodel = quantization.convert(qmodel)
print(model.conv1)
 QuantizedConvReLU2d(3, 64,
  scale=0.035, zero_point=0,
  kernel_size=(7, 7), ...)
```


How: tweak model, calibrate on data, convert

What: quantize weight and activations

for entire model or submodules

Good for: CNNs (if the accuracy drop is acceptable)

Savings: 1.5-2x faster compute, 4x less memory

collect calibration statistics

PYTORCH AT CORE

Same framework, no conversion

- Same serialization
- Python or TorchScript

Eager at its core

- Most logic is in python
- Extensibility, debuggers, stack traces

Extensible API

- New layers
- Observers
- Quantization techniques
- Partial quantization

torch.quantize_per_tensor

torch.quantize_per_channel

torch.nn.quantized.*

torch.nn.quantized.dynamic.*

torch.quantization.*

torch.quantization.Observer

torch.quantization.FakeQuant

EXAMPLE MODELS

	fp32 accuracy	int8 accuracy change	Technique	CPU inference speed up
ResNet50	76.1 Top-1, Imagenet	-0.2 75.9	Post Training	2x 214ms →102ms, Intel Skylake-DE
MobileNetV2	71.9 Top-1, Imagenet	-0.3 71.6	Quantization-Aware Training	4x 75ms →18ms OnePlus 5, Snapdragon 835
Translate / FairSeq	32.78 BLEU, IWSLT 2014 de-en	O.O 32.78	Dynamic (weights only)	4x for encoder Intel Skylake-SE

These models and more coming to TorchHub soon

TRY IT NOW

EXPERIMENTAL IN 1.3

QUANTIZATION CORE AND WORKFLOWS

Post training, dynamic and quantization-aware training x86 and ARM CPU Backends

Tell us what you think:
GitHub issues
discuss.pytorch.org #quantization

EXAMPLE MODELS

QUANTIZED MODELS AND TUTORIALS TO OBTAIN THEM

ResNet-50
ResNeXt-101
InceptionV3
MobileNetV2
... more to come

COMING IN 1.4

MORE BACKENDS

AND JIT WORKFLOW

Simpler workflow for TorchScript Expanding operator coverage

CORE PRINCIPLES

CORE PRINCIPLES

DEVELOPER EFFICIENCY

BUILDING FOR SCALE

PYTORCH JIT

PRODUCTION REQUIREMENTS

PORTABILITY

Models should run anywhere

PERFORMANCE

Whole-program optimization

PROBLEM STATEMENT — WE NEED A SYSTEM THAT CAN:

CAPTURE THE STRUCTURE OF PYTORCH PROGRAMS.

USE THAT STRUCTURE TO OPTIMIZE.

PROBLEM STATEMENT — WE NEED A SYSTEM THAT CAN:

1

CAPTURE THE STRUCTURE OF PYTORCH PROGRAMS.

TORCHSCRIPT

2

USE THAT STRUCTURE TO OPTIMIZE.

JIT COMPILER

TORCHSCRIPT

A static, high-performance subset of Python.

- 1. Prototype your model with PyTorch
- 2. Control flow is preserved
- 3. First-class support for lists, dicts, etc.

```
import torch
class MyModule(torch.nn.Module):
    def __init__(self, N, M, state: List[Tensor]):
        super(MyModule, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(N, M))
        self.state = state
    def forward(self, input):
        self.state.append(input)
        if input.sum() > 0:
            output = self.weight.mv(input)
        else:
            output = self.weight + input
        return output
# Compile the model code to a static representation
my_module = MyModule(3, 4, [torch.rand(3, 4)])
my_script_module = torch.jit.script(my_module)
# Save the compiled code and model data
# so it can be loaded elsewhere
my_script_module.save("my_script_module.pt")
```


PYTORCH JIT

An optimizing just-in-time compiler for PyTorch programs.

- 1. Lightweight, thread-safe interpreter
- 2. Easy to write custom transformations
- 3. Not just for inference! Autodiff support.

```
graph(%self : ClassType<MyModule>,
      %input.1 : Tensor):
 %16 : int = prim::Constant[value=1]()
 %6 : None = prim::Constant()
 %8 : int = prim::Constant[value=0]()
 %2 : Tensor[] = prim::GetAttr[name="state"](%self)
 %4 : Tensor[] = aten::append(%2, %input.1)
 %7 : Tensor = aten::sum(%input.1, %6)
 %9 : Tensor = aten::gt(%7, %8)
 %10 : bool = aten::Bool(%9)
 %output : Tensor = prim::If(%10)
    block0():
     %11 : Tensor = prim::GetAttr[name="weight"](%self)
      %output.1 : Tensor = aten::mv(%11, %input.1)
      -> (%output.1)
    block1():
      %14 : Tensor = prim::GetAttr[name="weight"](%self)
      %output.2 : Tensor = aten::add(%14, %input.1, %16)
      -> (%output.2)
 return (%output)
```


WHAT'S NEXT?

JIT AS A PLATFORM

QUANTIZATION

Model quantization done safely and automatically using JIT transformations.

MOBILE

A lightweight interpreter that can run on-device.

BACKENDS

Support for lowering models to static graph compilers, like TVM, Glow, XLA.

TRY IT

AND GIVE US FEEDBACK!

TUTORIALS

pytorch.org/tutorials

Introduction to TorchScript: https://pytorch.org/tutorials/beginner/ Intro_to_TorchScript_tutorial.html

Loading a TorchScript model in C++: https://pytorch.org/tutorials/advanced/ cpp_export.html

DOCUMENTATION

TorchScript reference: https://pytorch.org/docs/master/jit.html

FEEDBACK

"jit" label on github: https://github.com/pytorch/pytorch/issues? q=is%3Aissue+is%3Aopen+label%3Ajit

THANK YOU