Capacity. Persistence. Performance. Scale-in Software for Capital Markets Computing

Challenge: Maximizing modern hardware

Negative impacts of RAM limits, disk I/O and accelerator I/O:

RAM limits require more hardware and more time splitting data and distributing jobs Persisting workin-progress relies on storage I/O, which slows everything down

2

Low-level programming is needed to optimally feed HW accelerators

Solution: RAM-level performance using NVM

Helium is an ultra-fast system software that solves all three problems:

High-performance system-level data access software that emulates RAM using SSDs, expanding addressable memory into the tens of terabytes Provides persistence with negligible performance penalty while allowing multiple uses of data dictionaries

2

Lets applications bypass OS to address FPGAs & GPUs without complex, low-level coding

3

Process More Data, Faster

With Helium, you can:

Dramatically expand direct access to data without adding servers, or... ...achieve current performance levels at a fraction of the price*, and...

2

...put server-level capability on workstations or laptops

* A server with 1TB of SSD is about 1/4 the cost of one with 1TB of RAM

Use Cases

Financial risk analytics

Persistent data frames (Python/Spark)

Blockchain and DL

Financial back testing

IOT data ingest and indexing

Use Case: Blockchain

Distributed ledger technology is built on blocks and transactions pointing to each other

These pointers are typically saved using databases like RocksDB or LevelDB

A single transaction might consist of thousands of DB lookups and inserts

Helium as the storage engine dramatically increases transaction rates, reduces latency and jitter

Use Case: Backtesting in the Cloud

Cost of 1M Sim/Hr of "conventional cloud" with Helium vs without:

Helium Implementations

Business Benefits

Through dramatically expanded addressable application memory

Through automatic persistence

Efficiency Through concurrent access to the same data dictionaries by multiple users

Speed

Through optimized data flow for maximum CPU/FPGA/GPU processing utilization

Through leveraging lower cost SSD over higher cost RAM

Thank You

Visit https://helium.levyx.com to try the community version of Helium

