
Balaji Prabhakar
Professor of Computer Science and Electrical Engineering, Stanford University

Co-Founder, Tick Tock Networks

Democratizing Time Sync to
Level the Playing Field

Consider problems in financial trading caused by “random delay jitters”
• Fairness: In-order execution of transactions
• Fair access to data: Market participants should receive order book data simultaneously
• Protection from front running

And ask
• How can nanosecond-level clock sync at scale remedy these problems?
• How to obtain accurate clock sync at scale in commodity networks without special

hardware or infrastructure investment?

Focus on both
• Current on-prem exchange networks
• Future exchange networks in ad hoc, heterogeneous cloud environments
→Including some demos

Overview

Huygens: Originated at Stanford as an ML-based clock sync solution
• As part of the Self-Programming Networks research program
• Paper: https://www.usenix.org/node/211256

• Main ideas and results previously presented at STAC

Developed for commercial application as TTCS by Tick Tock Networks
• Software-based solution scales to 1000s of nodes
• Nanosecond-level clock sync accuracy with NIC hardware timestamps
• Microsecond-level accurate with CPU/VM/container timestamps
• Deploys on-prem or in one or more regions of the cloud

A new clock synchronization system

https://www.usenix.org/node/211256

DEMO of Tick Tock: Single Region of the Cloud

Applications to Financial Trading

Challenge #1: In-order Execution of Transactions

Gateways

Market
Participants

Market
ParticipantsGateways

Matching
Engine

In on-prem exchanges,
links from Gateways to

Matching Engine carefully
engineered to ensure equal

transit times

This is not possible in the Cloud;
hence more challenging

Challenge

Ensure transactions are
processed in the temporal

order in which they arrived at
their respective Gateways

Solution: Create “Time Perimeter” Using Accurate Clock Sync

Reordering
Buffer

Timestamp transactions at
Gateways to establish
precise order of arrival

Resequence
transactions in a

“reordering buffer”
before execution

Create a ”Time Perimeter”
by synchronizing the

Gateway clocks with the
Matching Engine

#2: Deliver Market Data Simultaneously

Market
Data

Market data is currently
delivered simultaneously to
participants by multicasting

Multicasting is not easy in
the Cloud

Solution: Time Perimeters + Hold-and-Release Buffers

Market
Data

… release them
simultaneously at

(geographically) different
locations

(Gateways or MP nodes)

Create Time Perimeters
at the Gateways …

… or adjacent to the
Market Participants

Timestamp order books at
the Matching Engine and …

DEMO of Simulated Stock Exchange in the Cloud

#3: Multi-venue Trades

Hong Kong

Tokyo

Singapore

A trader places an order
in Singapore and sends it

on to HK and Tokyo

Buy Order

Results in a sub-optimal
deal for the trader!

A Market Maker sees the
order in Singapore and

and anticipates it in
Tokyo because they’ve a
faster SG → Tokyo link

Tokyo

Singapore

Hong Kong

5,300 km ➔ 18 ms (speed of light)

Solution: Time Perimeter + Hold-and-Release Buffers

Create Time Perimeter
around SG, HK and Tokyo

1. Hold SG trade in buffer
2. Send it to HK and Tokyo
3. Release it ”simultaneously”

in SG, HK and Tokyo at
future time

Note: Clock sync accuracy only
needs to be better than speed of
light distance between venues.

Speed of light SG→Tokyo: 18ms

Clock Sync at Distance:
The Stanford CloudLab Experiment

CloudLab

• 3 sites – Utah, Wisconsin and Clemson

– Connected through Internet2’s 100Gbps network

• RTT between the sites
– Utah <-> Wisconsin: 36ms

– Utah <-> Clemson: 52ms

– Wisconsin <-> Clemson: 26ms

• Don’t know the routes

http://www.internet2.edu/

CloudLab: A Heterogeneous Environment

• 2-layer fat-tree network in each site

• Utah: 10Gbps
– Mellanox ConnectX-3 Pro NICs

• Wisconsin: 1Gbps
– Intel I350 NICs

• Clemson: 1Gbps
– Intel I350 NICs

• All NICs support hardware timestamping

Clock Sync Accuracy

p50 Huygens NTP

0% load 50% load 0% load 50% load

HW
timestamp

2ns 9ns 7.9us 6.7us

SW
timestamp

95ns 80ns 61us 67us

p99.9 Huygens NTP

0% load 50% load 0% load 50% load

HW
timestamp

26ns 54ns 21ms 14ms

SW
timestamp

486ns 384ns 9ms 54ms

Single-site: Utah

Multi-site: Utah, Wisconsin, Clemson
Huygens NTP

p50 p99.9 p50 p99.9

HW
timestamp

2.8us 10.0us 52ms 57ms

SW
timestamp

2.7us 10.2us 52ms 73ms

DEMO of Tick Tock: Multi-Site

Effort required to maintain accurate clock sync over network

⍺
Amount network and system “badness”

Network badness: Path congestion, path asymmetry, link/node failure, …

System badness: NICs/CPUs getting hot, room temperature change, vibration (e.g., fans), …

→ Therefore, an accurate clock sync system = great telemetry system

An Accurate Clock System is an Excellent Measurement System

4am 9pm 4am

Control signal applied to clock

Temperature reading from NIC

60oC

45oC

High accuracy and high performance clock sync
• Nanosecond-level with NIC hardware

timestamps
• Support single-site sync and multi-site sync

(regional and global)
• Scale up to 10s of 1,000s of servers

Complete visibility and insights across clocks,
servers and network

• Monitor and visualize clock sync
performance

• Correlate clock and network performance to
pin point and fix issues, including one-way
delay measurements and analytics

• Inter-site connectivity: identify path
asymmetry and path delay changes.

Easy to deploy and manage
• Install, config, and run in 30 minutes
• Admin console, APIs, and reporting

Tick Tock: A Modern, Software-based Solution for

Accurate Time Sync & Infrastructure Monitoring

Tick Tock
Deploy in minutes. Sync Anywhere. Complete Visibility.

NIC, Host, VM, Container

On-prem Cloud Edge

HW timestamp
< 10 ns

SW timestamp
100s of ns - μs

Not STAC Benchmarks

