Securing Low-latency Hardware Designs

Michael O'Sullivan, Engineering Director, Cadence Design Systems STAC Spring 2022 Summits

Cyber Security: Who Cares?

Aero/Def, auto, medical, industrial, comms, IoT, semi, robotics, ...

TECH CHANGING FACE OF SECURITY

Financial Technology

cādence

Intel CPUs

ranchScope exploits another weakness in CPU branch prediction iam Gavde on Mar 27, 2018, 10:26

- Impact: \$460M loss in 45 minutes
- Multiple factors in loss
 - Improperly set flag put system into test mode
 - Improperly configured production env 0
 - Dead code in production env ("Power Peg") 0
 - Lack of formal QA process
- Bug could have been a security issue
 - "Power Peg" was essentially a trojan

Build To Objective Security Analysis

	More Objective		
Property / Rules Driven Security	 Comprehensive asset analysis via security properties / rules System level security scenario verification 	Emulation and PSS Security	
Asset-Specific Security	 Formal property analysis guided by rules/SME analysis Comprehensive Mitre CWE analysis 	Properties / Rules	
Security Aware Verification	 Mitre CWE (ex. 1193 power-on, 1276 connectivity, 1242 undocumented features, 1245 improper state machines) 	Formal	
Comprehensive Verification	 Automated metrics analysis to verification plan Safety and rad-hard verification as needed 	Functional	
Essential Verification	100% code coverage w/ dead code and waiver analysisComprehensive lint analysis including coding weakness	Verification	
	More Subjective		

- Security starts with a foundation of comprehensive verification
- All projects should be security aware, adding technology to support by security requirements

Using Lint Checks to Reduce Potential Attack Surfaces

- Coding style can leave a design exposed
 - Ex: side-channel exploit could be forcing data input that causes a register overflow resulting in a denial of service
 - Ex: trojan hiding in state machines
- Examples coding issues
 - Undefined states in explicit and implicit state machines
 - Incomplete if-then-else statements
 - Uninitialized variable/signal states
 - Livelock/deadlock states
 - Unguarded overflow/ underflow registers/ queues/arrays, etc.
- Dead code elimination
 - Code coverage analysis

MITRE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

- CWE: list of known weaknesses that a secure system should not have
- Mitre Corp maintains an online db
- Started with SW CWE, HW added about a year ago

1194 - Hardware Design

- E C Manufacturing and Life Cycle Management Concerns (1195)
- -• C Security Flow Issues (1196)
- Integration Issues (1197)
- E General Circuit and Logic Design Concerns (1199)
- E Core and Compute Issues (1201)
- 🗉 C Memory and Storage Issues (1202)
- E C Peripherals, On-chip Fabric, and Interface/IO Problems (1203)

- Dever, Clock, and Reset Concerns (1206)
 - Debug and Test Problems (1207)
- -• Cross-Cutting Problems (1208)

✓ View Metrics					
	CWEs in this view		Total CWEs		
Weaknesses	96	out of	922		
Categories	12	out of	316		
Views	0	out of	44		
Total	108	out of	1282		

Security Verification Plan – Central Aggregation Point for Security Data

opentitan

Security Reference Platform

OpenTitan is the first open source project building a transparent, high-quality reference design and integration guidelines for silicon root of trust (RoT) chips.

Improper Finite State Machines in HW Logic with SuperLint

CWE	Description	Formal Application
1245	Improper Finite State Machines (FSMs) in Hardware Logic	SuperLint

- Faulty finite state machines (FSMs) in HW logic allow attacker to put system in undefined state causing denial of service (DoS) or gain privileges to system
- Formal analysis automatically extracts all states and transitions for each FSM in design
- Unreachable states/transitions indicate potential weaknesses where faults can lead the design into unknown behaviors

A	utomatic	Formal Properties		D'	XA	nal	lysis Bro	wser	
7	š 🕶 🔽 🛛	No filter 💽 🔽 Filter on nam	1e	a.b 😖		4		1 of 1 🕀 D L 🗄	FSM_NO_TRRN_4559 🤬 🥵 🤣 🔇
	Ÿ	Tag 🛛	Туре 🖓	Name	ר⊇		154	if (adv_en_i)	begin
1	~	FSM_NO_RCHB (fsm state cover)	Cover	fsm_state_cover_StOpWait_prop_4555	1	0	155	rounds = La	🌈 Graph.5009 [/vols/jasper_users/tom/opentitan-m 💷 🗆 🗙
	-	FSM_NO_RCHB (fsm state cover)	Cover	fsm_state_cover_StClean_prop_4556		~	156	end else if (File Edit View Window Help
-	-	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_Stidle_Stidle_prop_4557		1	158	end else if (
	1	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_Stidle_StTx_prop_4558	1	0	159	rounds = La	a 🗍 🛟 👄 🐐 🔤 📩 🗚 🔁 🗍 G ▼ 🔍 Search the GraphView
η	X	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StIdle_StTxLast_prop_455			160	end	
	1	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StTx_StTx_prop_4560			162	// we are ser	
	1	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StTx_StTxLast_prop_4561	1	2	163 0	state_d = (ro	
	-	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StTxLast_StTxLast_prop_4			164	end	
	-	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StTxLast_StOpWait_prop_			166		
	1	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StOpWait_StOpWait_prop	1	21	167	StTx: begin	StClean Stidle StT> StOpWait
	-	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StOpWait_StClean_prop_4		•	168	valid = 1 pi; strb = {IfBvtes	
	1	FSM_NO_TRRN (fsm trans cover)	Cover	fsm_trans_cover_StClean_StIdle_prop_4566			170		
	. 🗸	FSM NO RCHB (fsm state cover)	Cover	fsm state cover StCtrlDataIdle prop 4568	-		171	// transaction	
				<u>Þ</u>		0	173	if (kmac_data_i cnt_en = 1'bi	
To	tal: 124	3 Filtered: 896 Selected: 1	0 violati	ons out of 0 chee Validity: 854:42:(Run: 0:0:	18:0		174		
_	Violation	Messages View Automatic Formal Pro	perties						
ſ	sess	ion_0 🔲 session_1 🔲 session_2	1						Engine ready Console input ready

Key Overwrite in Wipe Mode Found with Formal Property Verification

1258 Exposure of Sensitive System Information Due to Uncleared	Debug Information Formal Property Verification

Disabled

Disabled is a state where the key manager is no longer operational. Upon Disabled entry, the working state is updated with KMAC computed random values; however, sideload keys are preserved. This allows the software to keep the last valid sideload keys while preventing the system from further advancing the valid key.

When advance and generate calls are invoked from this state, the outputs and keys are indiscriminately updated with randomly computed values. Key manager enters disabled state based on direct invocation by software:

- Advance from OwnerRootKey
- Disable operation

LFSR must be enabled in key wipe state

assert {u_ctrl.state_q == StCtrlWipe |-> (ctrl_lfsr_en && wipe_key)}

key values must be filled with random data

```
assert {u_ctrl.state_q == StCtrlWipe |-> kmac_key.key[0] == {8{ctrl_rand[0]}} }
assert {u_ctrl.state_q == StCtrlWipe |-> kmac_key.key[1] == {8{ctrl_rand[1]}} }
```

```
# software operations are forbidden when keymanager is disabled during key wipe
assert {!u_ctrl.en_i |-> u_ctrl.disable_sel && stage_sel == Disable}
```

T	Туре 🛛 🖗	Name $ abla$	Engine 🝸	Bound	Time	Task
×!	Assert	in_StCtrlWipe_wipe_lfsr_en	L	336 - 374	436.1	fpv_cwe1258
×	Cover (relat	in_StCtrlWipe_wipe_lfsr_en:witness1	N (4)	Infinite	0.0	fpv_cwe1258
~	Cover (relat	in_StCtrlWipe_wipe_lfsr_en:precondition1	L	330 - 374	436.1	fpv_cwe1258

if fault detected ic_keymgr_en_o EN : 4'b0101 ic_keymgr_en_i KEYMGR kmac_key_o otbn_key_o

LC_CTRL

wipe keys with

entropy if !EN or

Key Verification with Security Path Verification (SPV)

CWE	Description	Weakness
1263	Improper Physical Access Control	Data Confidentiality and integrity
1282	Assumed-Immutable Data is Stored in Writable Memory	Data integrity
1258	Exposure of Sensitive System Information Due to Uncleared Debug Information	Data confidentiality
1330	Remnant Data Readable after Memory Erase	Data confidentiality

Internal key is maintained inside of the keymgr_ctrl block

Confidentiality (leakage) – inject taint (unique tag) at the key and look for propagation at block outputs

Integrity (corruption) – inject taint at the inputs and look for propagation to key

Formal Safety Verification Exposes Security Vulnerability Analysis

CWE	Description	Formal Application
1261	Improper Handling of Single Even Upsets	Formal Safety Verification (FSV)

Check ability to detect or eliminate hacker attacks in secure subsystems

- IP is protected against hacker attacks
 - by sensors and checkers attack raises alarm
 - by error correction mechanism attack is eliminated
- Goal is to detect or correct all attacks

Broad Array of Security Solutions is Needed

Security Call to Action

- Assess current functional and security verification methodology
 - More comprehensive verification reduces security risk
- Discuss how security levels of assurance are applied to projects
 - Set security objectives
- Execute additional security verification
 - Discuss additional security verification goals
 - Identify joint engineering team to bring-up and apply new tools/methodology

- Measure results from application of new tools/methodology
- Document results and support materials/training to bring-up new projects

Cadence Security Verification Solution and Partners

cādence

© 2022 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at https://www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. Accellera and SystemC are trademarks of Accellera Systems Initiative Inc. All Arm products are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All MIPI specifications are registered trademarks or trademarks or service marks owned by MIPI Alliance. All PCI-SIG specifications are registered trademarks or trademarks are the property of their respective owners.