

Fairness through a picosecond lens

Daniel Brown Technical Solutions Architect STAC Summit – May 19, 2022

Agenda

- Problem Market Data Distribution
- Why does this happen in the ASIC?
- Can FPGA be of help?
- How was the delay measured?

• Exchange provides market data to each trader

- Exchange provides market data to each trader
- Exchange distributes data at time T₀

- Exchange provides market data to each trader
- Exchange distributes data at time T₀
- Assumption is that each trader receives market data at same time, time T₁

- Exchange provides market data to each trader
- Exchange distributes data at time T₀
- Assumption is that each trader receives market data at same time, time T₁
- However, these traders could receive data at different times

Network Node Delay

- In ASIC based switches, delay is product of multicast traffic forwarding
- Replication of packets is done serially to the ports
- Order and delay are product of ASIC architecture
- This will lead to delay between ports

- Unfairness happens because of the network and switch architecture
- Each network node, can introduce small delay in the network path
- With multiple network hops traders may receive delayed market data

Multicast Buffer

 Packets are stored in the multicast buffer in the ASIC

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer

- Packets are stored in the multicast buffer in the ASIC
- If multiple packets are processed, all stored in the same buffer
- Packets are replicated, by reading packets from multicast buffer
- After last port sends out packet, it is deleted from buffer

Multicast Buffer

 In FPGA based network switch, multicast replication is parallel

- In FPGA based network switch, multicast replication is parallel
- All ports members of multicast group send packet at same time

Multicast Buffer

 All ports members of multicast group send packet at same time

- In FPGA based network switch, multicast replication is parallel
- All ports members of multicast group send packet at same time

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring

*Not a STAC benchmark

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring

*Not a STAC benchmark

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring
 - Exact-capture tool set open-source software to analyze time stamps

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring
 - Exact-capture tool set open-source software to analyze time stamps
 - Traffic generator, or another source of multicast traffic

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring
 - Exact-capture tool set open-source software to analyze time stamps
 - Traffic generator, or another source of multicast traffic
 - Layer 1 TAP to distribute source of traffic to two different ports

*Not a STAC benchmark

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring
 - Exact-capture tool set open-source software to analyze time stamps
 - Traffic generator, or another source of multicast traffic
 - Layer 1 TAP to distribute source of traffic to two different ports
 - DUT on what latency and fairness is performed

- Higher precision latency measure:
 - Nexus 3550-F HPT performs ingress time stamping at 70ps* precision, and mirroring
 - Exact-capture tool set open-source software to analyze time stamps
 - Traffic generator, or another source of multicast traffic
 - Layer 1 TAP to distribute source of traffic to two different ports
 - DUT on what latency and fairness is performed
 - Traffic is sent to DUT, so latency of distribute, traffic latency is measured.

*Not a STAC benchmark

How was the delay calculated?

- Nexus 3550-F HPT time stamps packet at ingress port:
 - Time T_0 is reference time, where T_1 is time with addition of DUT latency
 - T_1 is produced per port, T_{1P1} , T_{1P2} ...
 - Traffic is mirrored toward Exact-capture
 - Exact-capture, processes time stamps and provides per port latency
 - By processing per port latency further, delay can be calculated as latency delta between ports

Latency_{P1} = T_{1P1} - T_0

Delta between ports = $Latency_{P1}$ - $Latency_{P2}$

Nexus 3550-T Market Data Fairness*

Switch front Panel Ports

Per port delay from fastest port in this sample – all ports are inside of 1ns

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

*Part of future NXOS software release

34

Not STAC Benchmark

Solution – Market Data Distribution with FPGA

- With Cisco FPGA based network switches, distribution is happening with minimal delay
- Each network node, treat ports fairly, so each port will get packet at the same time
- Even with multiple hops in the network each trader will receive market data at the same time as others

Cisco NX-OS support	Same NXOS CLI Same APIs Support in NDFC
Low Latency Layer 2 and 3	Port to port latency 95-160 nano seconds*

Cisco NX-OS support	Same NXOS CLI Same APIs Support in NDFC
Low Latency Layer 2 and 3	Port to port latency 95-160 nano seconds*
FPGA	Xilinx Ultrascale+ VU35P-3 FPGA with 8GB HBM2

	Cisco M	NX-OS support		Same NXOS CLI Same APIs Support in NDFC
L	Low Lat	ency Layer 2 and	3	Port to port latency 95-160 nano seconds*, 25G capable
		FPGA		Xilinx Ultrascale+ VU35P-3 FPGA with 8GB HBM2
iates All rights reserved - Cisc	co Public	Custom FDK	Design	FPGA application on the switch

*Not STAC Benchmark

The bridge to possible