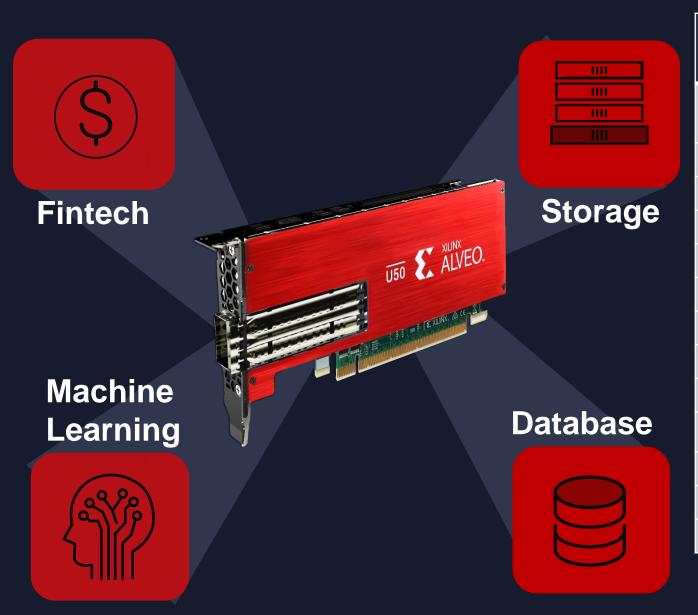
Accelerating Applications with the Xilinx Quantitative Finance Library

Alastair Richardson Global Business Development Oct 2019

Xilinx Alveo Product Lineup

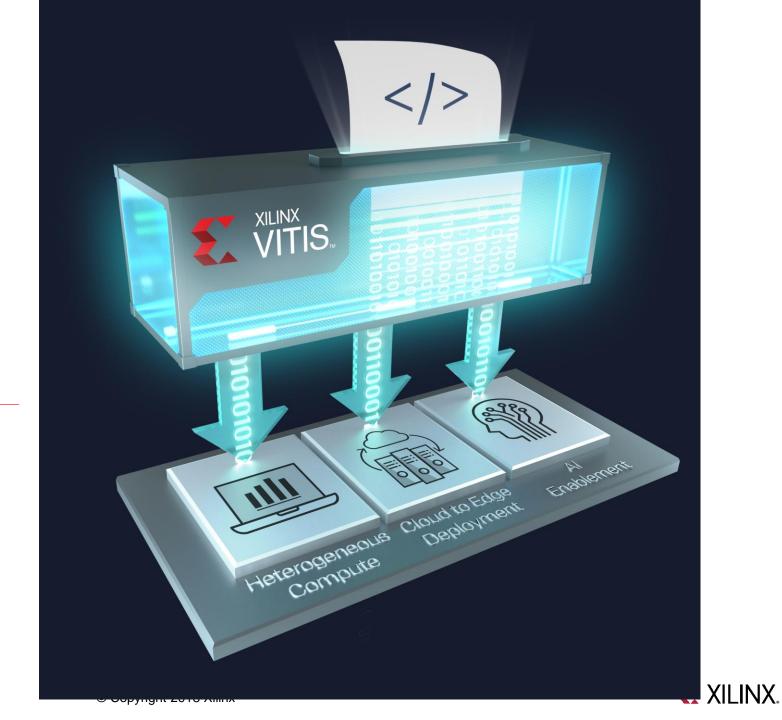
E ALVEO, U200
AUEO
raScale+ Architecture

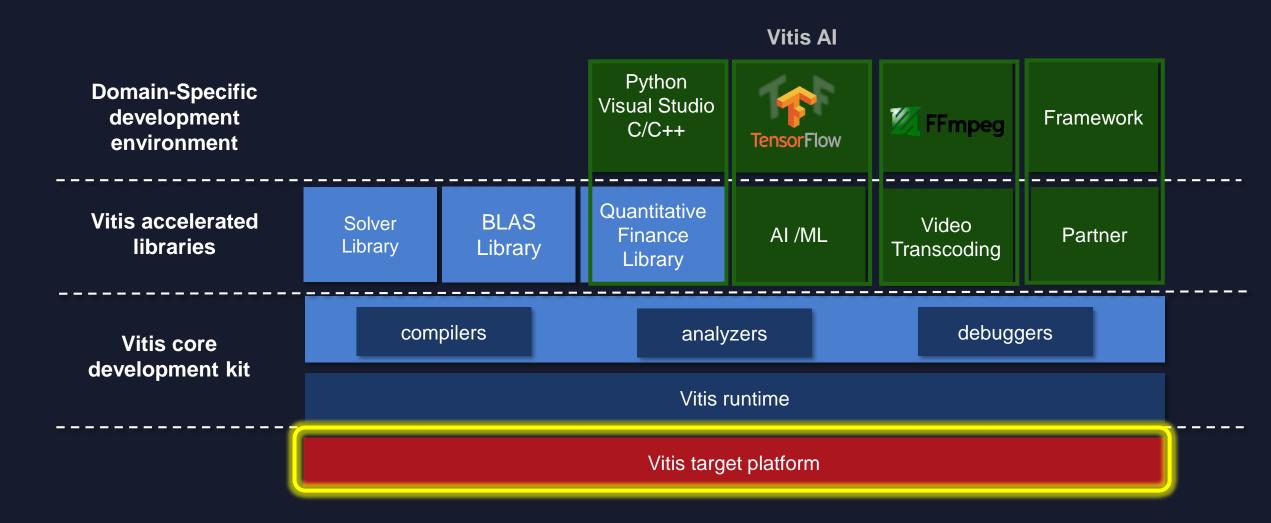


UltraScale+ Architecture	UltraScale+ Architecture	UltraScale+ Architecture	UltraScale+ Architecture
1,182k LUTs	1,728k LUTs	1,304k LUTs	872k LUTs
Dual slot, full height	Dual slot, full height	Dual slot, full height	Single slot, half height
64GB DDR, 77GB/sec	64GB DDR, 77GB/sec	8GB HBM2, 460GB/sec	8GB HBM2, 460GB/sec
PCIe Gen3	PCIe Gen3	PCIe Gen3, Gen4, CCIX	PCIe Gen3, Gen4, CCIX
2x QSFP 28 (100GbE)	2x QSFP 28 (100GbE)	2x QSFP 28 (100GbE)	1x QSFP 28 (100GbE)
< 225W	< 225W	< 225W	< 75W

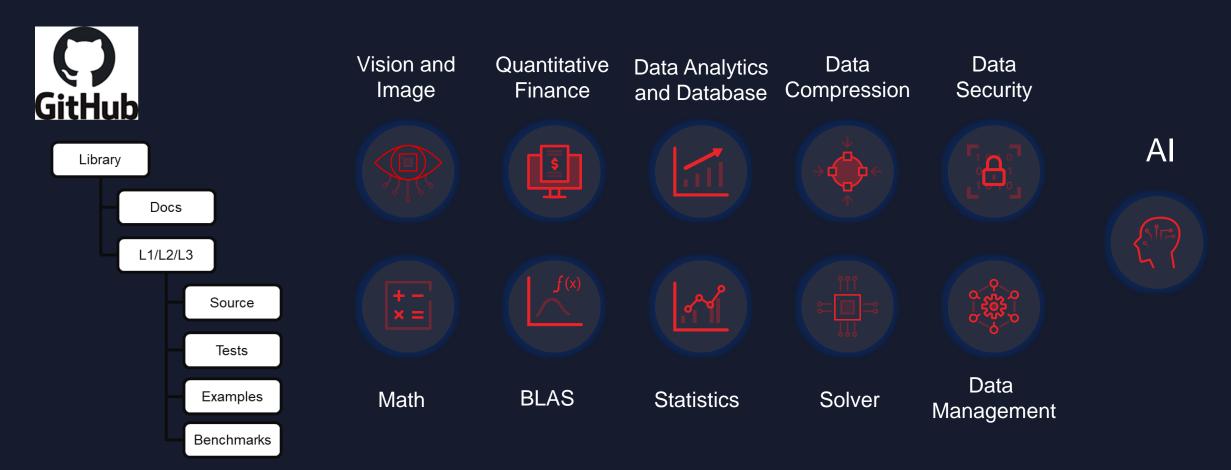
Alveo U50 – Low Profile Acceleration Card

Card	Alveo U50	
Primary Application	Fintech + Storage + Database + ML	
FPGA Design	XCU50	
CCIX	Yes	
Device VCCINT	0.85V	
Width	Single slot	
Form Factor (Passive)	HHHL	
Memory Target	8 GB HBM	
Memory Config	Dual Stack, 32 pseudo-ports	
PCle	2x Gen4x8, 1x Gen4x8, Gen3x16, CCIX	
Network I/F	2x SFP- DD* or 1X QSFP28	
Thermal	Passive	
Power (Max TDP)	75W	
KLuts	872K	


^{*} During ES, U50 card will have 2 SFP-DD ports


Announcing...

- Available within a month
- Standards, Open
- Free!


Vitis: Unified Software Platform

Vitis Accelerated Libraries

> Open-Source, performance-optimized libraries offering out-of-the-box acceleration.

Xilinx VITIS Quantitative Finance Library

Equity Product

Credit Product

Interest Rate Product

Commodity Product

FX Product

Black-Scholes Heston

European American Asian Barrier

Digital Cliquet

Linear Algebra

Cholesly Decomp LU/SVD/QR Decomposition Dense Matrix Multiply Space Matrix Multiply **Statistics**

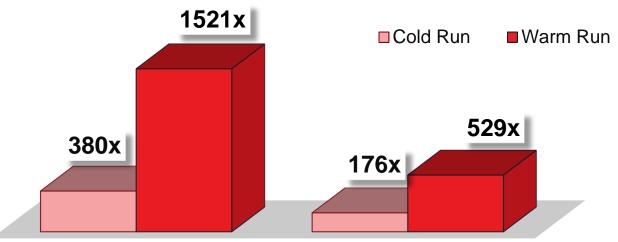
Random Number Generator Box-Muller Transform Distributions

Financial

Finite Difference
Monte-Carlo Methods
Brownian Bridge
Closed Form Solutions
Greeks/Sensitivities

Solver

Tridiagonal Solver Pentadiagonal Solver PDE Craig Sneyd


Basic Math Function

sqrt, abs, fabs, exp, log, pow, sin, cos, asin, acos, sinh, cosh, floor, fmod, modf, etc.

Quantitative Finance Library (NON-STAC Benchmark)

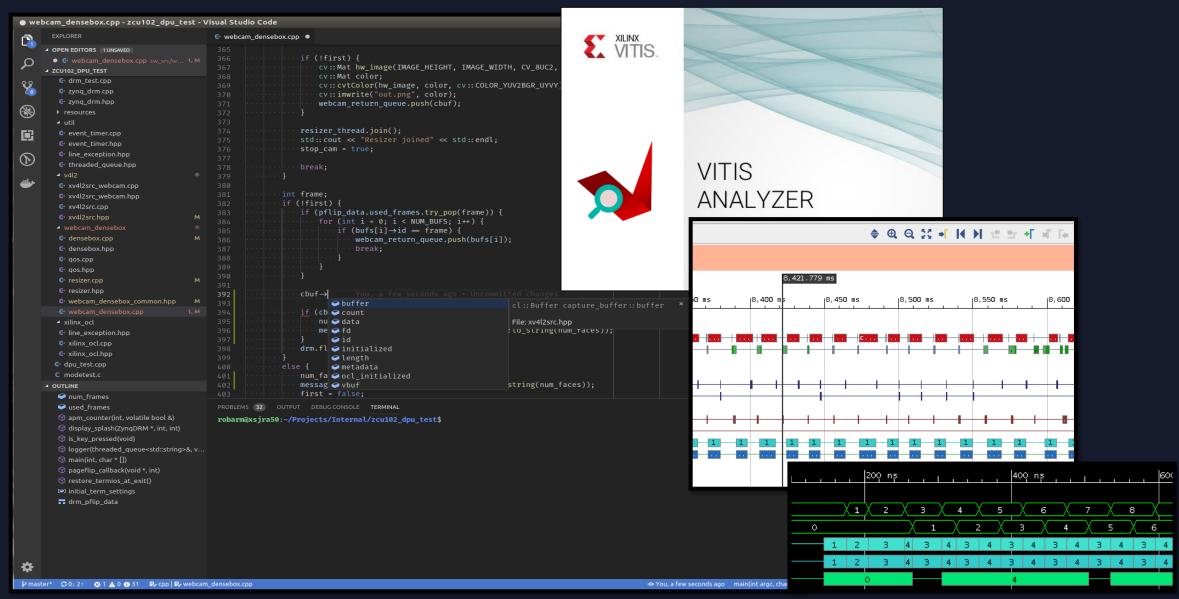
Monte Carlo European Options Pricing

Monte Carlo American Options Pricing

Monte Carlo European Options Pricing				
	Cold Run	Warm Run		
QuantLib	20.155 ms	20.155 ms		
Vitis Quantitative Finance Library	0.053 ms	0.01325 ms		
Speed-Up	380X	1521X		

Monte Carlo American Options Pricing				
	Cold Run	Warm Run		
QuantLib	1038.105 ms	1038.105 ms		
Vitis Quantitative Finance Library	5.87 ms	1.96 ms		
Speed-Up	176X	529X		

CPU: 2 Intel(R) Xeon(R) CPU E5-2690 v4 @3.20GHz, 8 cores per processor and 2 threads per core.


Xilinx: Vitis Quantitative Finance Library v1.0 running on 1 Alveo U250

Cold Run: Pricing Engine starts up in response to a request.

Warm Run: Pricing Engine is already running, with sufficient memory allocated to handle the request

Vitis -- Familiar SW Environment

Further simplify coding for FPGA in HLS

Application

```
void vadd(
        const unsigned int *in1,
        const unsigned int *in2,
        unsigned int *out,
        int size
#pragma HLS INTERFACE m axi port=in1 offset=slave bundle=gmem
#pragma HLS INTERFACE m axi port=in2 offset=slave bundle=gmem
#pragma HLS INTERFACE m axi port=out offset=slave bundle=gmem
#pragma HLS INTERFACE s axilite port=in1 bundle=control
#pragma HLS INTERFACE s axilite port=in2 bundle=control
#pragma HLS INTERFACE s axilite port=out bundle=control
#pragma HLS INTERFACE s axilite port=size bundle=control
#pragma HLS INTERFACE s axilite port=return bundle=control
    unsigned int v1 buffer[BUFFER SIZE];
    unsigned int v2 buffer[BUFFER SIZE];
    unsigned int vout buffer[BUFFER SIZE];
    for(int i = 0; i < size; i += BUFFER SIZE)</pre>
        int chunk size = BUFFER SIZE;
        if ((i + BUFFER SIZE) > size)
            chunk size = size - i;
        read1: for (int j = 0; j < chunk size; j++){
            v1 buffer[j] = in1[i + j];
        read2: for (int j = 0; j < chunk size; j++){
            v2 buffer[j] = in2[i + j];
        vadd: for (int j = 0; j < chunk size; j ++){
        #pragma HLS PIPELINE II=1
           vout buffer[j] = v1 buffer[j] + v2 buffer[j];
        write: for (int j = 0; j < \text{chunk size}; j++){
            out[i + j] = vout buffer[j];
```

Accelerator Code (Before)

```
void vadd(
    const unsigned int *in1,
    const unsigned int *in2,
    unsigned int *out,
    int size)
{
    for (int i = 0; i < size; i++)
        out[i] = in1[i] + in2[i];
}</pre>
```

Accelerator Code (After)

Solarflare – now a Xilinx Company

Enterprise enabled next generation SmartNICs powered by Onload

World Class Networking Talent Key Technologies:

Application acceleration Server security Network adapters

Market Leading Low Latency NIC ready for Enterprise

Adaptable. Intelligent.

