
Optimization Strategies
for the Deep Learning
storage stack

The Deep Learning Data Lifecycle

01 Acquire 02 Process 03 Train 04 Production 05 Store

Let’s look at this bit

But remember there are more challenges in the other stages

So what is different about Deep Learning?
And how can we create a storage environment that keeps things efficient and fast?

IO Data Path Backtesting Deep Learning

Application Time Series Database AI Framework

Application IO Read, Widespread and Random
Big mmap operations

Read (and Write!), often mmap.
Many re-reads

Data Volumes Typically 100s TB to PBs PBs --> 100s of PBs,

Compute System Processor CPU CPU and many GPU

Compute System Network Single connection to 100G/IB Many connections to 200G/IB

The Deep Learning Compute
Architecture is Different

• ..is much higher demanding than conventional compute!

• Dual port NICs (storage) close to CPU, up to 28 GB/s per NIC

• Eight GPUs interconnected within the system through
NVSwitches (NVIDIA proprietary interconnect, 10x higher
bandwidth than PCIe Gen4, 600 GB/s GPU-to-GPU)

• Two single port NICs (cluster) and two GPUs per PCIe
switch, up to 24 GB/s per NIC, optimal path for GPUDirect
Storage

• GPUs from multiple systems can communicate through a
cluster network, ideally via single port NICs on same PCIe
Switch as GPU (ports 1-8)

An Example GPU Platform 9/1011/12

1

2

3

4

5

6

7

8

How can we optimize the
compute side datapath?

• GPUDirect enables Direct Remote Memory Access from the
filesystem to GPU memory

• 2x-8x higher BW data transfers between Storage and GPU

• 3.8x lower latency with no faulting and bounce buffers

• Stable and flat latencies as GPU concurrency increases

• Lower consumption of host CPU or memory subsystem

• The GPU is the computing element with the highest IO
bandwidth, e.g. 215 GB/s vs. the CPU’s 50 GB/s

• Very fast access to petabytes of remote storage faster than
even the page cache in CPU memory

Optimizing the DataPath at the CPU/GPU level

GPUDirectNo GPUDirect

Bounce Buffer PCIe GPUDirect

CPU

PCIe SW

GPU

N
e

tw
o

rk

CPU

PCIe SW

GPU

R
A

M

N
e

tw
o

rk

R
A

M

• In GPU systems we usually have access to multiple
interfaces. How can we use them all, without making
our lives complicated?

• Some filesystems enable the grouping of network
interfaces to achieve full aggregate throughput
capabilities on a Client

• This doesn’t need networking changes – it all happens
with the filesystem software

• This Improves peak performance with single mount
point and no complicated setup

Optimizing the DataPath at the Network level

Multi-Rail Networking Discrete Networking

One mount
point

Many
mounts,
many IP
address

The Checkpoint Problem

• Most Deep Learning workloads follow the same paradigm:
• Read Data into GPU memory, compute and all-reduce

• Read Same Data into GPU memory, compute and all-reduce

• Checkpoint save the state for later use!
– Maybe the job crashes and needs restarting

– Maybe we want to change parameters (increasingly common)

• Read Same Data into GPU memory, compute and all-reduce

Deep Learning Training Workflow

• GPT-2 (Generative Pre-trained Transformer 2) is a model that translates text, answers,
questions, summarizes passages and generates text output

• GPT-3 is 100 times larger (more sophisticated)

• These models scale from 1Billion to 1Trillion parameters in size
• parameters are the number of layers, the number of neurons per layer, the number of

training iterations, etc. – these are getting bigger and bigger every year by multiple factors

• This is a tough use case for storage because large models require large checkpoints to
hold their state

• Example: A GPT-3 13Billion parameter model: (this is quite a small model today!)
• 4-way tensor parallel, 2-way pipeline parallel, distributed workload
• Size of checkpoint file is 172GB across 8 files  a small model…

• Every minute spent waiting for IO is wasted time

Large Transformer Models create big challenges

Q. So how can storage cope?

A. By having good Write Performance for (a modest number of)
concurrent writers!

Usually there is some discrepancy between read and write
performance for a storage system, since

• the write path needs to have data protection applied
(erasure coding) and be written safely to persistent media
or protected media

• Flash is faster for reads vs writes

• Concurrent writers to a single file need to be handled with
locks

But for some storage systems the write is many factors lower
than reads. To handle large scale checkpoints, you want the
storage system write performance to be more than 50% of the
read performance.

Read and Write Performance of Storage

0

10000

20000

30000

40000

50000

60000

a single file, 1 client, 16
threads, seq

a single file, 32 clients,
16 threads per client,

sequential

a single file, 32 clients,
16 threads per client,

random

Single Shared File Writes

Example of good write performance
(2RU storage system)

High Concurrency
Operations to a single file

• This can often be a problem for filesystems
that aren’t truly parallel

• Problem is that
• the pieces of the file reside upon a limited

set of physical devices
• Even if each individual process is reading in

a nice sequential fashion, because there
are many competing readers, the IO
pattern seen by the storage system will be
random

• If a storage system is not truly parallel, the
devices can become an area for contention

Shared File Operations
Many processes on a distributed system often want to read from a single file

C

Pieces of a file

C C C C C

• Flexible striping policies allow a filesystem to
contend with the most problematic concurrent
IO patterns better.

So now that we have good single thread/single client
performance, lets tackle concurrency

C C C C C C

• Single thread performance can be critical,
particularly for poorly optimized code

• With some filesystems, even a single
thread can read over 5GB/s – up to
20+GB/s from a single server

• Ampere 2 x 80 CPU cores with 2 x IB-EDR

Single Arm Client Performance

0

5000

10000

15000

20000

25000

30000

1 process 2 process 4 process

Th
ro

u
gh

p
u

t
(M

B
/s

)

Throughput for a Single Arm Client

write(MB/s) read(MB/s)

mpirun -np $n --allow-run-as-root ior/src/ior -w -r -t 1m -b ${(512 / n))g -e -F -vv -o /exafs/file

*Not a STAC benchmark
** limited by NIC performance

*

**

Parallel Filesystems can max-out the hardware even with just
one file

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

a single file, 1 client, 16

threads, seq

a single file,1 client, 16

threads, ran

a single file, 32 clients, 16

threads per client,

sequential

a single file, 32 clients, 16

threads per client, random

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Single Shared File Performance with Striping

Max Performance for 1 client **

Max Performance for one storage unit

*Not a STAC benchmark
** limited by NIC performance

*

• Deep Learning can involve very large amounts of data subject to:
• Very high demanding compute-side environments

• Checkpointing (writes) that can stop productive output

• Large scale re-reads of data

• Highly concurrent access to individual files

• To find a suitable storage solution one needs to know:
• High Throughput/IOPs with low thread count

• High Throughput/IOPs even to small client count

• Concurrency Results for shared file access

• Good write Performance

• Cost and Complexity of the storage system to get the best numbers!

Optimization Strategies for the Deep Learning Storage

