
Optimization Strategies 
for the Deep Learning 
storage stack



The Deep Learning Data Lifecycle

01 Acquire 02 Process 03 Train 04 Production 05 Store

Let’s look at this bit

But remember there are more challenges in the other stages



So what is different about Deep Learning?
And how can we create a storage environment that keeps things efficient and fast?

IO Data Path Backtesting Deep Learning

Application Time Series Database AI Framework

Application IO Read, Widespread and Random 
Big mmap operations

Read (and Write!), often mmap. 
Many re-reads

Data Volumes Typically 100s TB to PBs PBs --> 100s of PBs, 

Compute System Processor CPU CPU and many GPU

Compute System Network Single connection to 100G/IB Many connections to 200G/IB



The Deep Learning Compute 
Architecture is Different



• ..is much higher demanding than conventional compute!

• Dual port NICs (storage) close to CPU, up to 28 GB/s per NIC

• Eight GPUs interconnected within the system through 
NVSwitches (NVIDIA proprietary interconnect, 10x higher 
bandwidth than PCIe Gen4, 600 GB/s GPU-to-GPU)

• Two single port NICs (cluster) and two GPUs per PCIe 
switch, up to 24 GB/s per NIC, optimal path for GPUDirect
Storage

• GPUs from multiple systems can communicate through a 
cluster network, ideally via single port NICs on same PCIe 
Switch as GPU (ports 1-8)

An Example GPU Platform 9/1011/12
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How can we optimize the 
compute side datapath?



• GPUDirect enables Direct Remote Memory Access from the 
filesystem to GPU memory

• 2x-8x higher BW data transfers between Storage and GPU

• 3.8x lower latency with no faulting and bounce buffers

• Stable and flat latencies as GPU concurrency increases

• Lower consumption of host CPU or memory subsystem

• The GPU is the computing element with the highest IO 
bandwidth, e.g. 215 GB/s vs. the CPU’s 50 GB/s

• Very fast access to petabytes of remote storage faster than 
even the page cache in CPU memory

Optimizing the DataPath at the CPU/GPU level

GPUDirectNo GPUDirect
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• In GPU systems we usually have access to multiple 
interfaces. How can we use them all, without making 
our lives complicated?

• Some filesystems enable the grouping of network 
interfaces to achieve full aggregate throughput 
capabilities on a Client

• This doesn’t need networking changes – it all happens 
with the filesystem software

• This Improves peak performance with single mount 
point and no complicated setup

Optimizing the DataPath at the Network level

Multi-Rail Networking Discrete Networking

One mount 
point

Many 
mounts, 
many IP 
address



The Checkpoint Problem



• Most Deep Learning workloads follow the same paradigm:
• Read Data into GPU memory, compute and all-reduce

• Read Same Data into GPU memory, compute and all-reduce

• Checkpoint save the state for later use!
– Maybe the job crashes and needs restarting

– Maybe we want to change parameters (increasingly common)

• Read Same Data into GPU memory, compute and all-reduce

Deep Learning Training Workflow



• GPT-2 (Generative Pre-trained Transformer 2) is a model that translates text, answers, 
questions, summarizes passages and generates text output

• GPT-3 is 100 times larger (more sophisticated)

• These models scale from 1Billion to 1Trillion parameters in size
• parameters are the number of layers, the number of neurons per layer, the number of 

training iterations, etc. – these are getting bigger and bigger every year by multiple factors

• This is a tough use case for storage because large models require large checkpoints to 
hold their state 

• Example: A GPT-3 13Billion parameter model: (this is quite a small model today!)
• 4-way tensor parallel, 2-way pipeline parallel, distributed workload
• Size of checkpoint file is 172GB across 8 files  a small model… 

• Every minute spent waiting for IO is wasted time

Large Transformer Models create big challenges



Q. So how can storage cope?

A. By having good Write Performance for (a modest number of) 
concurrent writers!



Usually there is some discrepancy between read and write 
performance for a storage system, since

• the write path needs to have data protection applied 
(erasure coding) and be written safely to persistent media 
or protected media

• Flash is faster for reads vs writes

• Concurrent writers to a single file need to be handled with 
locks

But for some storage systems the write is many factors lower 
than reads. To handle large scale checkpoints, you want the 
storage system write performance to be more than 50% of the 
read performance.

Read and Write Performance of Storage
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High Concurrency 
Operations to a single file



• This can often be a problem for filesystems 
that aren’t truly parallel

• Problem is that
• the pieces of the file reside upon a limited 

set of physical devices
• Even if each individual process is reading in 

a nice sequential fashion, because there 
are many competing readers, the IO 
pattern seen by the storage system will be 
random

• If a storage system is not truly parallel, the 
devices can become an area for contention

Shared File Operations
Many processes on a distributed system often want to read from a single file
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• Flexible striping policies allow a filesystem to 
contend with the most problematic concurrent 
IO patterns better.

So now that we have good single thread/single client 
performance, lets tackle concurrency

C C C C C C



• Single thread performance can be critical, 
particularly for poorly optimized code

• With some filesystems, even a single 
thread can read over 5GB/s – up to 
20+GB/s from a single server

• Ampere 2 x 80 CPU cores with 2 x IB-EDR

Single Arm Client Performance 
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Throughput for a Single Arm Client
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mpirun -np $n --allow-run-as-root ior/src/ior -w -r -t 1m -b ${(512 / n))g -e -F -vv -o /exafs/file

*Not a STAC benchmark
** limited by NIC performance
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Parallel Filesystems can max-out the hardware even with just 
one file
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• Deep Learning can involve very large amounts of data subject to:
• Very high demanding compute-side environments

• Checkpointing (writes) that can stop productive output

• Large scale re-reads of data

• Highly concurrent access to individual files

• To find a suitable storage solution one needs to know:
• High Throughput/IOPs with low thread count 

• High Throughput/IOPs even to small client count

• Concurrency Results for shared file access

• Good write Performance

• Cost and Complexity of the storage system to get the best numbers!

Optimization Strategies for the Deep Learning Storage




