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for the Deep Learning 
storage stack



The Deep Learning Data Lifecycle

01 Acquire 02 Process 03 Train 04 Production 05 Store

Let’s look at this bit

But remember there are more challenges in the other stages



So What is Different about Deep Learning?
And how can we create a storage environment that keeps things efficient and fast?

IO Data Path Backtesting Deep Learning

Application Time Series DataBase AI Framework

Application IO Read, Wide and Random Big mmap
operations

Read (and Write!), often mmap. Many re-reads

Data Volumes Typically 100s TB to PBs PBs --> 100s of PBs, 

Compute System Processor CPU CPU and many GPU

Compute System Network Single connection to 100G/IB Many connections to 200G/IB



Let’s focus on three parts:

Optimizations for….

1) The Containerized, GPU-centric Client

2) The RDMA, multi-pathed Network

3) The Deep Learning Data Patterns

The Deep Learning Data Lifecycle

03 Train



Optimizations for the 
Containerized, GPU-centric 
Client



• More complex that conventional compute!

• Two single port NICs (cluster) and two GPUs per PCIe 
switch, up to 24 GB/s per NIC, optimal path for 
GPUDirect Storage.

• Dual port NICs (storage) close to CPU, up to 28 GB/s per 
NIC. 

• Eight GPUs interconnected within the system through 
NVSwitches (NVIDIA proprietary interconnect, 10x 
higher bandwidth than PCIe Gen4, 600 GB/s GPU-to-
GPU).

• GPUs from multiple systems can communicate through 
a cluster network, ideally via single port NICs on same 
PCIe Switch as GPU (ports 1-8).

An Example GPU Platform
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• GPUDirect* enables Direct Remote Memory Access from 
the filesystem to GPU memory

• 2x-8x higher BW data transfers between Storage and GPU.

• 3.8x lower latency with no faulting and bounce buffers

• Stable and flat latencies as GPU concurrency increases.

• Lower consumption of host CPU or memory subsystem

• The GPU is the computing element with the highest IO 
bandwidth, e.g. 215 GB/s vs. the CPU’s 50 GB/s.

• Very fast access to petabytes of remote storage faster than 
even the page cache in CPU memory.

Optimizing the DataPath at the CPU/GPU level
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• In GPU systems we usually have access to multiple 
interfaces. How can we use them all, without making 
our lives complicated?

• Some filesystems enable the grouping of network 
interfaces to achieve full aggregate throughput 
capabilities on a Client

• This doesn’t need networking changes – it all happens 
with the filesystem software

• Improved peak performance with single mount point 
and no complicated setup

Optimizing the DataPath at the Network level

Multi-Rail Networking Discrete Networking

One mount 
point

Many 
mounts, 
many IP 
address



Optimizations for Deep 
Learning Data Patterns



• Most Deep Learning workloads follow the same paradigm:
• Read Data into GPU memory, compute and all-reduce

• Read Same Data into GPU memory, compute and all-reduce

• Checkpoint save the state for later use!
– Maybe the job crashes and needs restarting

– Maybe we want to change parameters (increasingly common)

• Read Same Data into GPU memory, compute and all-reduce

Deep Learning Training Workflow



• GPT-3 scale from 1B to 1T parameters in size
• parameters are the number of layers, the number of neurons per layer, the number of 

training iterations, etc. – these are getting bigger and bigger every year by multiple factors

• This is a tough use case for storage because large models require large checkpoints to 
hold their state 

• Example: A GPT-3 13B parameter model: (this is quite a small model today!)
• 4-way tensor parallel, 2-way pipeline parallel, distributed workload

• Size of checkpoint file is 172GB across 8 files  a small model… 

• Every minute spent waiting for IO is wasted time

Large Transformer Models create big challenges



Usually there is some discrepancy between read and write 
performance for a storage system, since

• the write path needs to have data protection applied 
(erasure coding) and be written safely to persistent media 
or protected media

• Flash is faster for reads vs writes

• Concurrent writers to a single file need to be handled with 
locks

But for some storage systems the write is many factors lower 
than reads. To handle large scale checkpoints you want the 
storage system write performance to be more than 50% of the 
read performance.

Read and Write Performance of Storage
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• Deep Learning Workloads need to read the same datasets over and over and 
over again – it’s called multi-epoch training

• Gradient decent based learning algorithms can get it wrong! They need many 
passes over the data – i.e. Multiple epochs improve the chances of getting it 
right…

But

• Manually copying datsets to compute-local Flash is a tiresome process for 
admins

• Users are not necessarily familiar with data transfer strategies, cost and time, 

So….

• Each compute node can have a local directory that can be used as a cache

• All necessary datasets are prepopulated into the cache

• All re-reads do not require any network traffic and keeps the whole 
network/storage environment less loaded for other concurrent workloads

The Multi-Epoch Training Problem

DL training

Read once from main 
storage

Cache epoch data



• ResNet50 benchmark on DGX-A100 + AI400 without cacheing

• Each phase reads same data from network (purple)

• Compute runs in parallel with IO (CPU orange, GPU green)

• ResNet50 with chacheing on internal NVMe devices

• First phase also reads from network (purple)
• Total data read volume is similar, second read from RAM

• Computation also reads from network/RAM while files copied

• Write to cache storage on NVMe (red)

• Second phase reads from NVMe at double bandwidth (cyan)

• GPU usage (green) the same, CPU usage (orange) lower
• No network/server load on second and later runs

Compute Cacheing for Multi-
Epoch Training
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• This can often be a problem for filesystems that 
aren’t truly parallel.
• the pieces of the file reside upon a limited set of 

physical devices

• Even if each individual process is reading in a nice 
sequential fashion, because there are many competing 
readers, the IO pattern seen by the storage system will 
be random

• If a storage system is not really parallel, the devices 
can become an area for contention

Shared File Operations
Many processes on a distributed system often want to read to a single file.
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How to Make Shared File Operations FAST
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Parallel Filesystems can max-out the hardware even with just 
one file
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• Deep Learning can involve very large amounts of data subject to:
• Complicated compute-side environments
• Checkpointing (writes) that can stop productive output
• Large scale re-reads of data
• Highly concurrent access to one file

• To find a suitable storage solution one needs to know:
• Throughput/IOPs to a single thread!
• Throughput/IOPs to a single client
• Concurrency Results for shared file access
• Write Performance
• Cost and Complexity of the storage system to get the best numbers!

Optimization Strategies for the Deep Learning Storage



Latest STAC Benchmark 
KDB221014



vs All-Flash NAS solution*

STAC-M3 Antuco Suite

was faster in 13 of 17 mean response time Antuco
benchmarks, including:
• 6x speedup in 50-multi-user intervalized

stats (STAC-M3.β1.50T.STATS-UI.TIME)
• 5x speedup in 10-user aggregate stats (STAC-

M3.β1.10T.STATS-AGG.TIME) 
• 4.9x speedup in single-user intervalized 

stats (STAC-M3.β1.1T.STATS-UI.TIME)

*KDB220506

STAC-M3 Kanaga Suite

Was faster in 21 out of 24 Kanaga mean-response time benchmarks, including:

2.1 – 4.4x speedup in single-user high-bid (STAC-M3.β1.1T.{2,3,4,5}YRHIBID.TIME)
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