

STAC Update: Fast Data

Peter Nabicht President, STAC

peter.nabicht@STACresearch.com

Overview

FPGA Special Interest Group

Cloud connectivity benchmark development

STAC-N1 (full network stack)

FPGA SIG Background

- Founded with 7 financial firms
- Goal:
 - Work together on non-proprietary challenges in FPGA development that all firms would benefit from solving
- Initial objectives
 - Facilitate dialog regarding common challenges in FGPA design, development, testing and deployment
 - Articulate industry requirements for FPGA hardware and toolchains where commonalities exist

What's happening now

- The group is meeting every 4 to 6 weeks
- Grown to
 - 16 financial firms
 - Exchanges, hedge funds, prop shops, and banks
 - 7 vendors
 - board, chip, development tools, and IP providers
 - vendors who leverage FPGA for their own projects
- Expanding on initial objectives, with focuses on:
 - Joint initiatives that allow for collaboration across financial firms and vendors.
 - Exploring open source and open-source friendly projects
 - Deeper dives with vendors on critical tool chain components

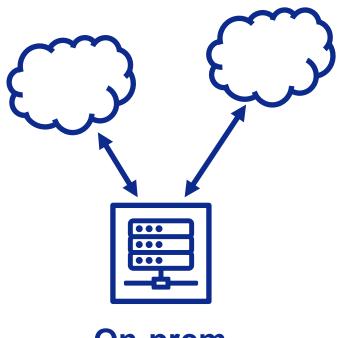
Current collaborations: 3 main projects

- RapidWright / RapidStream improvements, including
 - Common requirements, requests, and prioritized bugs
 - Collaborating with developers at AMD at a deeper level
- Language support
 - Jointly contribute to VHDL and SystemVerilog projects that check canonical language feature support in other tools
 - Use to convey of critical features to vendors
- Joint development of open-source Switch and/or NIC reference implementation
 - Exploring currently existing projects as starting points
 - Focus on the primary needs of trading firms

Education

- Previously
 - Financial firms FPGA developers presented different build, test, and deploy pipelines
 - RapidWright project deep dive led by project engineers from AMD
- Upcoming
 - Tutorial for CXL for FPGA to CPU communication and impact on development from Intel

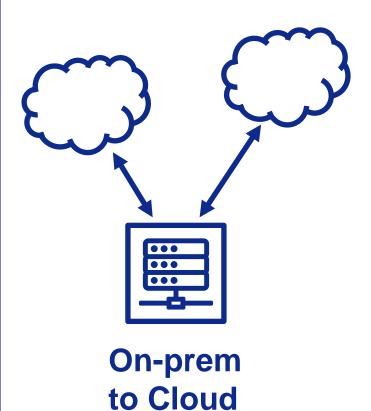
FPGA SIG update

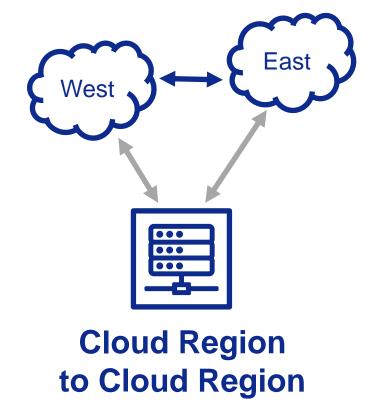

- Topics and projects are driven by interests of financial firms
- You too can join us

www.STACresearch.com/fpga

Cloud connectivity latencies

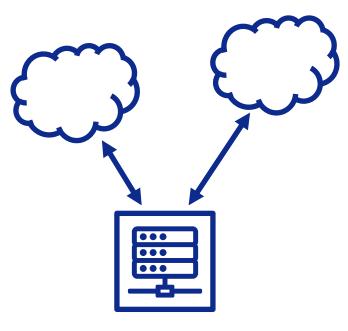
- Have had increasing interest in understanding:
 - Latency
 - Determinism

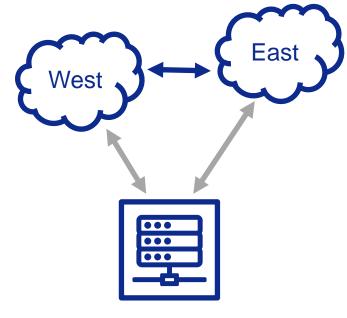



On-prem to Cloud

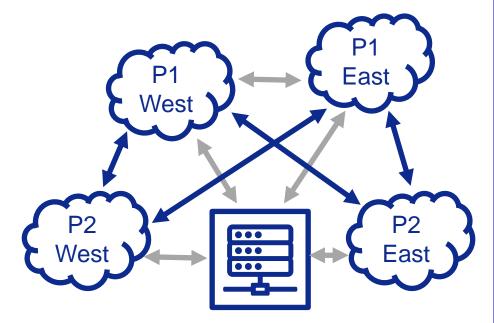
Cloud connectivity latencies

- Have had increasing interest in understanding:
 - Latency
 - Determinism





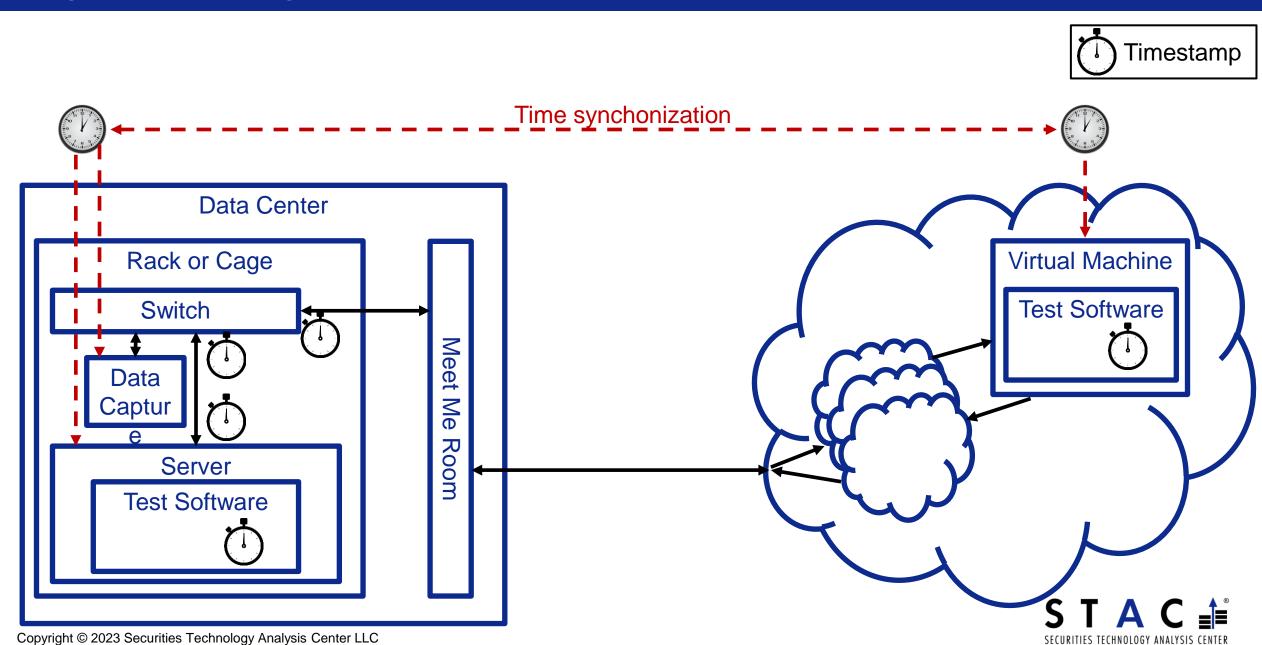
Cloud connectivity latencies


- Have had increasing interest in understanding:
 - Latency
 - Determinism

On-prem to Cloud

Cloud Region to Cloud Region

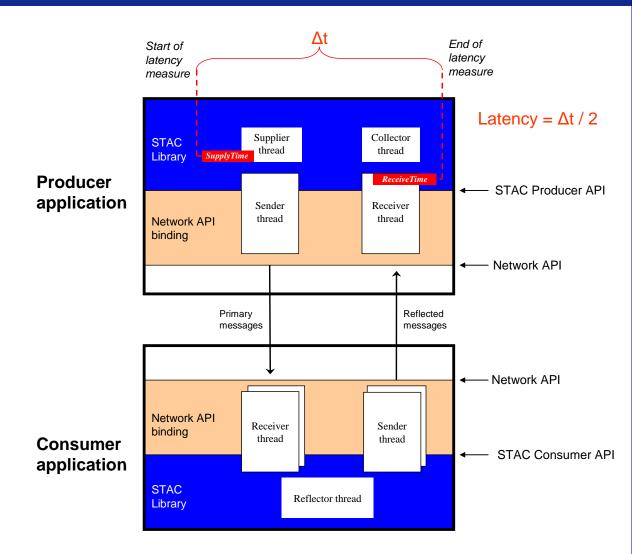
Cloud Provider to Cloud Provider



Issues with measuring cloud networks

- Opaque network infrastructures
- Dynamic network infrastructures
- Noisy neighbors
- No line capture
- Time synchronization?
 - What should be required for time synchronization?
 - What sub tests are needed to prove the accuracy of this?

High-level diagram: on-prem to cloud


Open questions on measuring cloud systems

- How long and when should we measure?
 - Time of day and time of month can impact performance due to noisy neighbors
- How many instances should we measure?
 - Different instances will have different paths to get to them
 - How many do we run in parallel vs how many total?
- Time synchronization?
 - What should be required for time synchronization?
 - What sub tests are needed to prove the accuracy of this?

STAC-N1

- Measures the performance of a host network stack (server, OS, drivers, host adapter)
- Round-trip software timestamping
- Market data style workload
- Network API to network API
 - No middleware, feed handlers, etc.

STAC-N1 / UDP / AMD / HPE / XtremeScale / OpenOnload

- First STAC software latency benchmarks with AMD EPYC
- Stack
 - STAC-N1 UDP-TCP binding
 - 2 x HPE ProLiant DL345 Gen10 Plus Servers
 - 1 x 32-core AMD EPYC[™] 75F3 @ 2.95Ghz (4 GHz Boost)
 - AMD Xilinx XtremeScale™ X2522-25G-PLUS Adapter
 - Red Hat Enterprise Linux 8.4
 - 25Gb (via cross-over cable, FEC off)

www.STACresearch.com/AMD221001

Vs. all public results for UDP on non-overclocked servers

- The lowest maximum latency for the base rate of 100k messages per second
 - STAC.N1.β1.PINGPONG.LAT1
- The highest maximum throughput tested of 1.2 million messages per second
 - STAC.N1.β1.PINGPONG.TPUT1
- The lowest 99p and max latency at the highest rate tested. Both:
 - STAC.N1.β1.PINGPONG.LAT2
 - STAC.N1.β1.PINGPONG.LAT3

www.STACresearch.com/AMD221001

