METAMAKO MetaWatch tested with STAC-TS

- STAC-TS.NTE2: Ultra-high frequency reference capture and
 - STAC-TS.PSE1: Port-sync error (same device)

Dr Dave Snowdon, Matthew Knight

Simplifying networks **Reducing latency** Increasing flexibility

Metamako's network monitoring solution

MetaWatch

Combine traditional network monitoring into one powerful device:

- Tapping
- Aggregation
- Deep Buffering
- Nanosecond Timestamping
- Time Synchronisation

MetaWatch replaces:

- 30 passive optical taps
- an aggregation and timestamping switch
- Wiring mess

• media converters, patch panels, and all other Layer 1 switch use cases

Advanced Deep Buffering

MetaWatch

Advanced Deep Buffering

- Data is buffered in up to 32GB
- Aggregate 300G ingress to 20G egress
- 'Lossless Ethernet' using industry-standard IEEE flow control

What this means: Don't Drop Packets

- absorb microbursts and over-subscription; •
- monitor **more connections** with the same device;
- analytics consumes packets as fast as it is capable;
- aggregate multiple devices further.

STAC-TS Network Error Tests

Step 1: How accurate are the ports relative to each other? STAC-TS.PSE1

Step 2: How accurate is on STAC-TS.NTE2

Step 3: Combine to determine accuracy of all ports.

Step 2: How accurate is one port relative to a time source?

STAC-TS.PSE1* Port Synchronisation Error (Same Device)

Percentile

100%

99.99%

 0.001 ± 0.003

 0.001 ± 0.002

*Preliminary results, subject to confirmation

STAC-TS.NTE2 Network Time Error

45 15-.40

STAC-TS.NTE2

How we measured

- A stream of 1 PPS pulses from the Rubidium Frequency Standard was split and sent to both the DUT and the Oscilloscope • The Oscilloscope was used to measure and characterize the skew and jitter
 - between the two pulses
- A stream of 10GbE frames from the Packet Source was split using an optical splitter before being send to the DUT and a breakout board converting the electrical signals from the SFP+ cage to a pair of 1 m 50 Ω Coax cables A second breakout board and pair of Coax cables was used to measure and characterize any skew from the optical splitter, the fibre cables and the
 - transceivers
- Immediately following each run, the oscilloscope was configured to measure the 1,000 PPS period jitter and the relative position in time between the 1,000 PPS and 1 PPS channels

Key Elements of Interest

- Time Standard: Free running rubidium standard
- Oscilloscope sampling accuracy:
 - Sampling frequency: 80 GS/s
 - Resolution: 12.5 ps
- Measurement accuracy (10G to PPS): 50 ps
 - 1 ps is the latency of 0.24 mm of coax

Timebase	e Est	0 ns]	Trigger	C1(D)
	50.0	ns/div	Stop	10 m
40.0 kS	80.0) GS/s	Edge	Positiv

Positive

6/2/2017 3:50:35 PM

It was not all smooth sailing...

The oscilloscope's 64b/66b Decode table in Sequence Mode only exports with nanosecond precision he alternative was to manually extract the table from us = round (app. SerialDecode. Decodel. Out. Result. CellValue (i, 2) * 1000000, 6) kture = app. Seria Dec de Decodel. Out. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 3) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) type = app. Seria Decode Lout. Result. CellValue (i, 4) seria De

A larger than standard oscilloscope acquisition buffer is if not IsNumeric(blockpayloadarray(0,0)) then I C My ie It is a Capture 1,000 S of Segments over multiple

outstring = index & "," & timeus & "," & blocktype & "," & primitive & "," & blockpayloadarray(0,0)

File	Vertical	Timebase	Trigger	Display	Cursors	Measure	Math Ana	alysis	Utilities	Suppor
C1										
<u></u>									++	
<u>~</u>										
		1 11	11111					1111		
53										
. 111	. <u> II I . II III .</u>				L L . J .		<u> . . . </u>	
			• •							
Z2	· · · ·		· · ·			·····				
••		Diat		2.11.1	2 04) 53		District	04.02%		D.C.
Measur	re	P1:dt 1 00000	rig(C1) P 100 ms	2:ddelay(C	2,C1) P3	:setup(C1,C1)	P4:ddelay(G1,G2)		P5:
mean		1.000000	00 ms	48.25078	 6 ns					
min		1.00000	000 ms	48.2450	6 ns					
max		1.00000	000 ms	48.2570	9 ns					
sdev			0 s	4.92	27 ps					
num		2.9	999e+3		3					
status			 Image: A set of the set of the							
64B66E	3 Time	- Block	Туре	⊸Ty	peField	- Primitive			Block	Payload
231	2.999000	22 s Data E	Block						0x0 0x	0 0x0 0x0
224										
231	2.999000	23 s Data B	Block						0x0 0x0	0 0x0 0x0
231	2.9990002.999000	23 s Data E 23 s Contr	Block ol Block	Oxo	CC	Data(4)+Ter	minate+IdIe(3)	0x0 0x 0xcc 0	0 0x0 0x0 xe9 0xfc (
231 231 231	 2.999000 2.999000 2.999000 2.999000 	23 s Data E 23 s Contr 24 s Contr	Block fol Block fol Block	Oxo Ox1	cc 1e	Data(4)+Ter Idle+Idle	minate+IdIe(3)	0x0 0x 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc (x0 0x0 0x
231	 2.999000 2.999000 2.999000 2.999000 	23 s Data E 23 s Contr 24 s Contr	Block ol Block ol Block	Oxo Ox1	cc 1e	Data(4)+Ter Idle+Idle	minate+IdIe(3)	0x0 0x0 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x
231 231 231	 2.999000 2.999000 2.999000 2.999000 8.8 050 500 m)//div 	23 s Data E 23 s Contr 24 s Contr	Block ol Block ol Block	0xc 0x1 0x1	cc 1e BID50 Z2	Data(4)+Ter Idle+Idle zoom(C2	minate+IdIe(3)	0x0 0x 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc (x0 0x0 0x
231 231 231	 2.999000 2.999000 2.999000 2.999000 S B D50 500 mV/div 0 mV offs et 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 62 8 500 -1.30	Block ol Block ol Block Block MV/div 0 V ofst	0x0 0x1 3 SI 50.0 m 0.0 mV	cc 1e BID50 nV/div offset	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50 0 ns/di	minate+IdIe(3)	0x0 0x 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc (x0 0x0 0x
231 231 231	 2.999000 2.999000 2.999000 2.999000 5.00 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr C2 S 500 -1.30 3.00	Block ol Block ol Block BID50 mV/div 0 V ofst 0 kSeg	0x0 0x1 3 50.0 n 0.0 mV 3.000	cc 1e BID50 nV/div offset kSeg	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se	minate+Idle(3)	0x0 0x 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x
231 231 231 C1	 2.999000 2.999000 2.999000 2.999000 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr C2 8 500 -1.30 3.00	Block ol Block ol Block BID50 mV/div 0 V ofst 0 kSeg	0x0 0x1 3 \$1 50.0 n 0.0 mV 3.000	cc 1e BID50 nV/div offset kSeg	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se	minate+Idle(3)	0x0 0x0 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ■ 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 500 -1.30 3.00	Block ol Block ol Block IBID50 mV/div 0 V ofst 0 kSeg	0x0 0x1 3 \$1 50.0 n 0.0 mV 3.000 24 Z5	cc 1e BID50 nV/div offset kSeg Z6	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se	minate+Idle(3) Z10	0x0 0x0 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ■ 500 mV/div 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr 24 s 500 -1.30 3.00	Block ol Block ol Block IBID50 mV/div 0 V ofst 0 kSeg Z3 Z3 Z3 Z3	0xc 0x1 3 50.0 n 0.0 mV 3.000 24 25	cc 1e BID50 NV/div offset kSeg Z6	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Sec Z7 Z Iorizontal	minate+IdIe(3) Z10	0x0 0x0 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 S B D50 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 500 -1.30 3.00	Block ol Block ol Block IBID50 mV/div 0 V ofst 0 kSeg Z3 Z3 Segment First	0xc 0x1 3 \$1 50.0 n 0.0 mV 3.000 24 Z5 S	cc 1e BID50 NV/div offset kSeg Z6 H	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Ser Z7 Z Iorizontal cale / div	minate+Idle(3) [210]	0x0 0x0 0xcc 0 0x1e 0	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 Source 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 500 -1.30 3.00	Block ol Block ol Block mV/div 0 V ofst 0 kSeg 23 Segment First 9	0xc 0x1 3 \$1 50.0 n 0.0 mV 3.000 24 Z5 S	cc 1e BID50 Z2 nV/div offset kSeg Z6 F 50.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se Z7 Z Iorizontal Scale / div	minate+Idle(3) Z10	0x0 0x0 0xcc 0 0x1e 0 211	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV
231 231 231 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 Source 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 500 -1.30 3.00	Block ol Block ol Block mV/div 0 V ofst 0 kSeg Z3 Segment First 9 Num	0xc 0x1 3 \$1 50.0 m 0.0 mV 3.000 24 Z5 S	cc 1e BID50 nV/div offset kSeg Z6 F 50.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Sec Z7 Z Iorizontal scale / div Center	minate+Idle(3) Z10	0x0 0x0 0xcc 0 0x1e 0 211 440	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ■ 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr 24 s Contr 500 -1.30 3.00 22 89 89	Block ol Block ol Block mV/div 0 V ofst 0 kSeg Z3 Segment First 9 Num	0xc 0x1 3 50.0 n 0.0 mV 3.000 24 25	cc 1e BID50 NV/div offset kSeg Z6 F 50.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Ser Z7 Z Iorizontal scale / div Center	minate+Idle(3)	0x0 0x0 0xcc 0 0x1e 0 211 440 1.2	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce 52 V
231 231 231 C1 Zoon	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ■ 500 mV/div 0 mV offset 3.000 kSeg 	23 s Data E 23 s Contr 24 s Contr 24 s 500 -1.30 3.00 722 899 899	Block ol Block ol Block mV/div 0 V ofst 0 kSeg Z3 Segment First 9 Num	0xc 0x1 3 \$1 50.0 n 0.0 mV 3.000 24 25 S	cc 1e BID50 NV/div offset kSeg Z6 F 50.0 ns 0.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Ser Z7 Z Iorizontal cale / div Center	minate+Idle(3) Z10 C D D T T T T T T T T	0x0 0x0 0xcc 0 0x1e 0 211 440 1.2	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce 52 V
231 231 231 C1 Zoon	 ∠ 2.999000 ∠ 2.999000 ∠ 2.999000 ∠ 2.999000 SOU mV/div O mV offset O mV offset<	23 s Data E 23 s Contr 24 s Contr 24 s 500 -1.30 3.00 22 89 89	Block ol Block ol Block mV/div 0 V ofst 0 kSeg Z3 Z Segment First 9 Num	0xc 0x1 3 \$1 50.0 m 0.0 mV 3.000 24 25 5	cc 1e BID50 NV/div offset kSeg Z6 F 50.0 ns 0.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Sec Z7 Z Iorizontal scale / div Center x 1.00	minate+Idle(3)	0x0 0x0 0xcc 0 0x1e 0 211 440 1.2	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce 52 V x 1
231 231 231 C1 Zoon	 ∠.999000 ∠.999000 ∠.999000 ∠.999000 ∠.999000 SOURCE 	23 s Data E 23 s Contr 24 s Contr 24 s 500 -1.30 3.00 722 899 899	Block ol Block ol Block mV/div 0 V ofst 0 kSeg Z3 Segment First 9 Num	0xc 0x1 3 50.0 n 0.0 mV 3.000 24 25	cc 1e BID50 NV/div offset kSeg Z6 F S0.0 ns 0.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se Z7 Z Iorizontal cale / div Center x 1.00	minate+Idle(3)	0x0 0x0 0xcc 0 0x1e 0 211 440 1.2	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce 52 V x 1
231 231 231 C1 Zoon C2	 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ▲ 2.999000 ■ 500 mV/div 0 mV offset 3.000 kSeg n Z1 Trace On ✓ Source 	23 s Data E 23 s Contr 24 s Contr 24 s 500 -1.30 3.00 22 8 500 -1.30 3.00 1 89 89 1	Block fol Block fol Block IBID50 mV/div 0 V ofst 0 kSeg Z3 Segment First 9 Num	Oxc Ox1 3 \$1 50.0 m 0.0 m 3.000 24 Z5 5	cc 1e BID50 NV/div offset kSeg 26 F 50.0 ns 50.0 ns	Data(4)+Ter Idle+Idle zoom(C2 440 mV/di 50.0 ns/di [899] 1 Se Z7 Z Iorizontal scale / div Center x 1.00	minate+Idle(3)	0x0 0x0 0xcc 0 0x1e 0 211 440 1.2	0 0x0 0x0 xe9 0xfc 0 x0 0x0 0x Z12 Ver Scal 0 mV Ce 52 V x 1

Script running; please wait.

5/31/2017 9:05:43 AM

Results from one of the STACaudited runs re-analyzed in ps

- 19,152 samples over 3,000
 - Segments
 - Min: -2.334 ns
 - Mean: -0.257 ns
 - Max: 1.829 ns
 - Range: 4.163 ns
- 78.5% of samples lie within ± 1 ns
- 99.7% of samples lie within ±2 ns

500

375

250

125

-requency

STA Accura • At leas with r

 Combining the errors (max - min) into the calculation gave us an overall measurement uncertainty of 50ps

STAC-TS.NTE2

Accuracy confidence?

At least 1,000 samples of each measurement were taken
 with picosecond resolution

Conclusions What has been achieved?

Conclusions

- The first official STAC-TS tests in conjunction with STAC;
- MetaWatch was calibrated for skew;
- Can be compared with other devices using STAC-TS.PSE.2 •

MetaWatch was proven to be very accurate, to a regulatory standard.

Simplifying networks **Reducing latency** Increasing flexibility

Find out more: info@metamako.com www.metamako.com

