

Improving FPGA Use Financial Library Solutions

Mike Strickland, Intel-PSG Steve Weston, Intel-PSG STAC, New York, 07 November 2016

Overview

- •Going beyond OpenCL for Ease of Use
- •Using Libraries to scale up and out
- •Frameworks for Analytics and Machine Learning

Going beyond OpenCL for Ease of Use

•Software Programmers

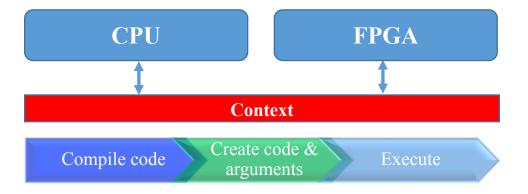
•Need Logic and Data Management - need to write lines of code!

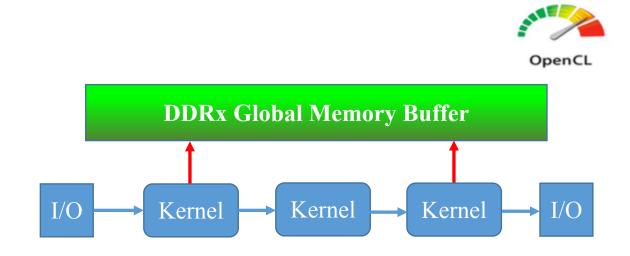
OpenCL Compiler Benefits

- •Ease of use
- •Scalable
- •Heterogeneous
- •Leverage existing libraries
- •Vendor choice through open standards

Channels/Pipe Extensions

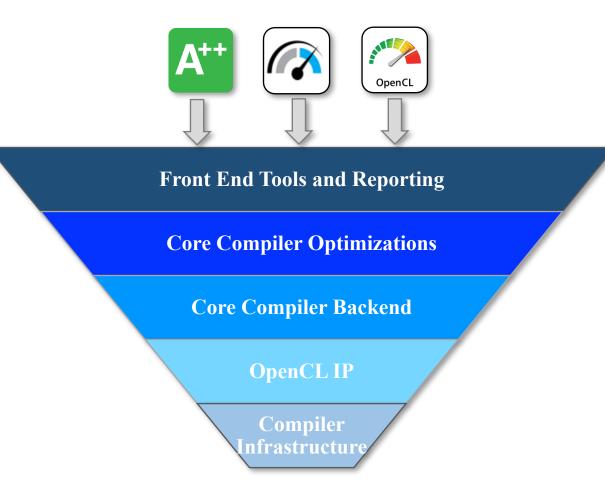
- •Kernel → Kernel
- •External I/O → Kernel
- Mix and match HDL and Kernels



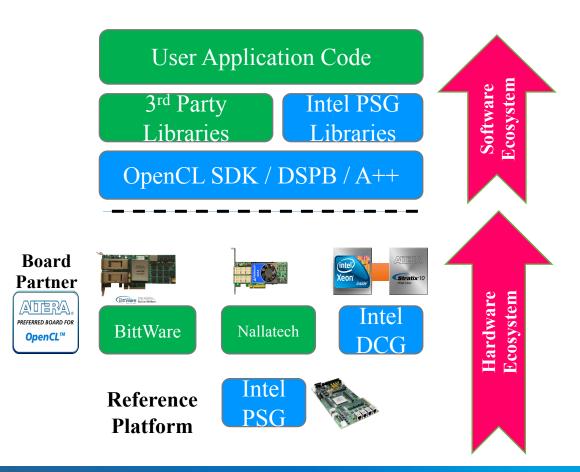


Add Libraries to Existing Programming Interfaces

Today: "C to Gates", Matlab, OpenCL



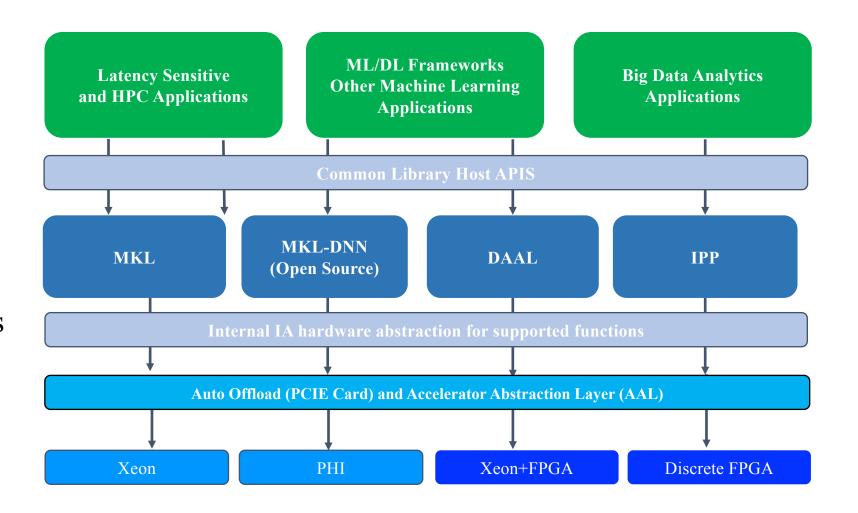
Turnkey Libraries AND User Defined Libraries



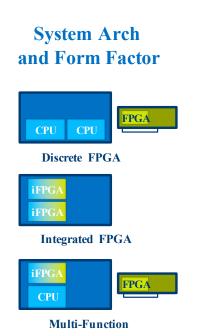
Exposing Libraries via Intel-MKL

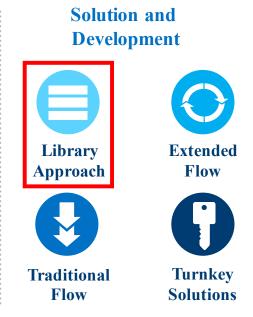
New capability:

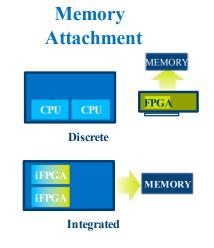
- Adding to existing Xeon library functions currently exposed through MKL.
- In future, calls to selected MKL functions will also execute on either Xeon/Phi or FPGA.
- Minimsing changes to users application code.



Libraries are key to scaling







Libraries will enable:

- 1. FPGAs to be used easily and conveniently by software users.
- 2. Close-coupling with Xeon enables users to choose the right solution for their specific problem.
- 3. Users to scale up the software stack and scale out across multiple devices.

Libraries will be delivered at several levels:

- Risk management
- Machine learning
- Big data(centre) analytics

- Pricing/valuation functions
- Filters and signal processing
- Statistical functions

- Mathematics
- Arithmetic
- Accuracy and precision

Turnkey financial libraries

Exchange Traded	Payoff	Product coverage	Phase 1
Black-Scholes	European	European exercise options on all underlyings	V
Bjerksund-Stensland	American	American exercise options on most underlyings	✓
Bachelier	Spread (normal)	European exercise options on normal spreads	✓
Cox-Ross-Rubenstein	American	American exercise options on equities	✓
Curran	Average rate	European exercise on arithmetic average on most underlyings	✓
Garman-Kohlhagen	European	European exercise on currencies	✓
Jewson	European binary	European exercise on heating and cooling days	√
Kirk/Bjerksund	Spread (lognormal)	European exercise options on log-normal spreads	✓
Merton	European	European exercise on dividend paying single stocks	✓ .

Demo using Black-Scholes

$$C(S, t) = \mathbf{N}(d_1)S - \mathbf{N}(d_2)Ke^{-rt}$$

$$d_1 = \frac{1}{\sigma\sqrt{t}} \left[\log\left(\frac{S}{K}\right) + t\left(r + \frac{\sigma^2}{2}\right) \right]$$

$$d_2 = \frac{1}{\sigma\sqrt{t}} \left[\log\left(\frac{S}{K}\right) + t\left(r - \frac{\sigma^2}{2}\right) \right]$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{d} e^{-\frac{1}{2}z^2} dx$$

Low Level Library

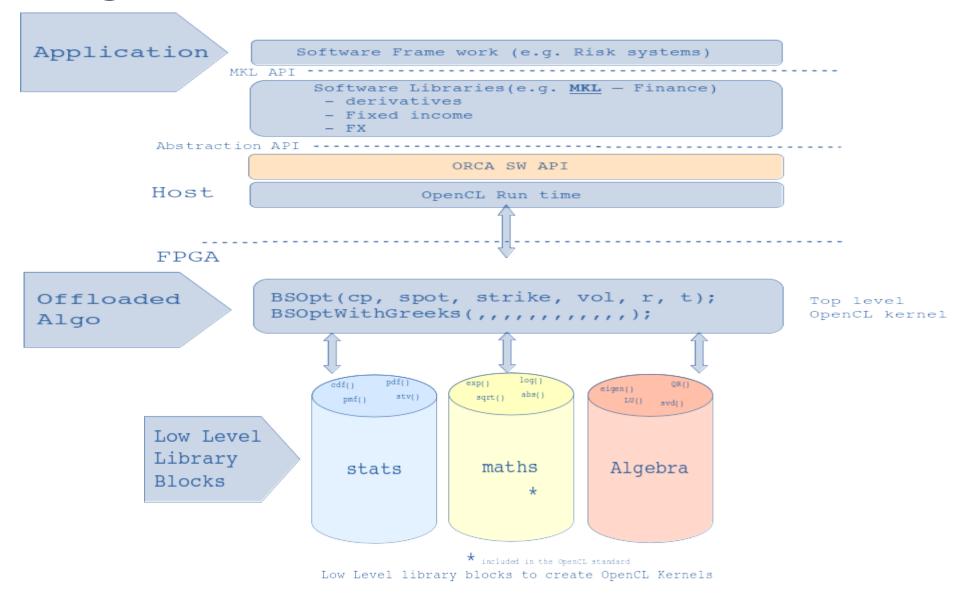
Blocks

 $\Delta_C = \frac{\partial C}{\partial S} = N(d_1)$, gamma: $\Gamma_C = \frac{\partial^2 C}{\partial S^2} = \frac{N'(d_1)}{S\sigma\sqrt{\tau}} = \frac{K e^{-r\tau} N'(d_2)}{S^2\sigma\sqrt{\tau}}$, $\Theta_C = \frac{\partial C}{\partial t} = -rK e^{-r\tau} N(d_2) - \frac{\sigma S N'(d_1)}{2\sqrt{\tau}} = -K e^{-r\tau} \left[r N(d_2) + \frac{\sigma N}{2\sigma} \right]$ $\rho_C = \frac{\partial C}{\partial r} = \tau K e^{-r\tau} N(d_2) ,$ vega: $\mathcal{V}_C = \frac{\partial C}{\partial \sigma} = \sqrt{\tau} S \, \mathcal{N}'(d_1) = \sqrt{\tau} K \, \mathrm{e}^{-r\tau} \, \mathcal{N}'(d_2)$. float OptionPricer(char callPutFlag, float spot, float strike, float vo float d1, d2; d1 = (log(spot/strike) + (r + vol * vol / 2) * t) / (vol * sqrt(t))d2 = d1 - vol * sqrt(t); if (call rtFlag == 'c') return oot * CND(d1) - strike * exp(-r * t) * CND(d2); else if (call utFlag == 'p') return str. ke * exp(-r * t) * CND(-d2) - spot* CND(-d1); pdf() sqrt() abs() maths Algebra stats Arria 10 FPGA - SoC * included in the OpenCL standard

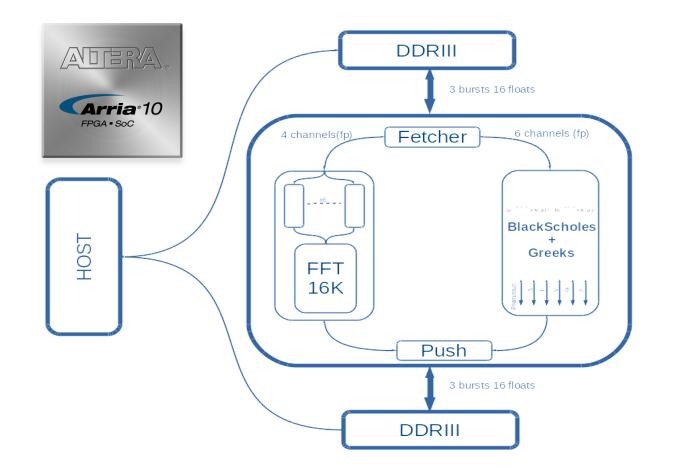
Low Level library blocks to create OpenCL Kernels

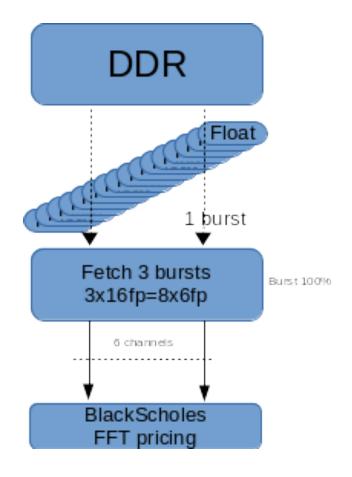
pmf()

Example using Black-Scholes

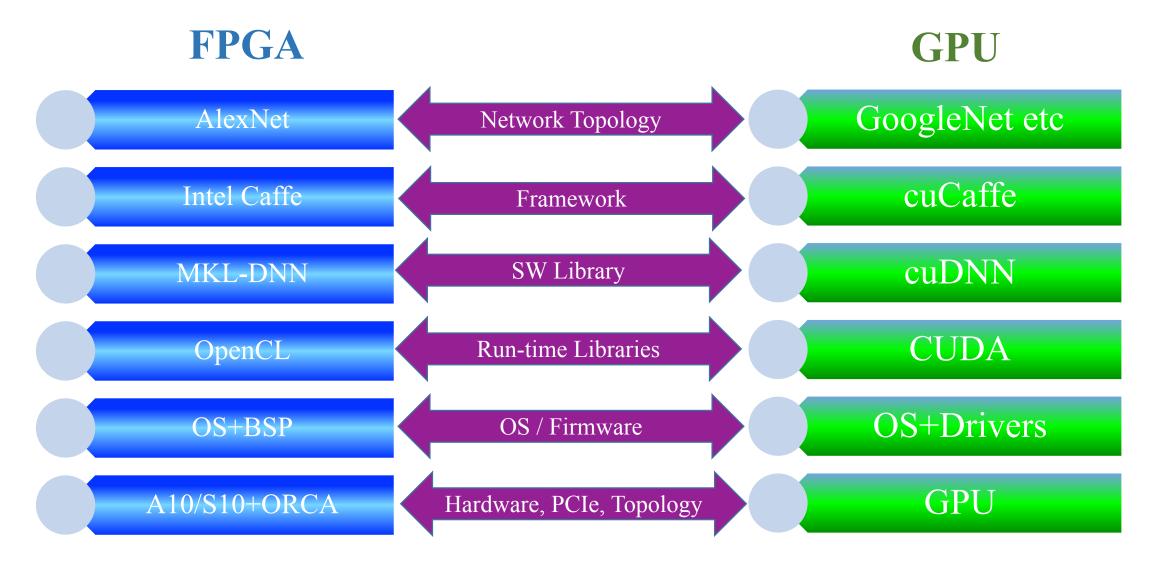


Example using Black-Scholes





Enabling a more generic framework



Thank you

If you have any questions please stop by the Intel stand!